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Elements of a Game
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Elements of a Game

To characterize a game one needs to specify several items:

The players are the agents that make decisions.

The rules define the actions allowed by the players and
their effects.

The information structure specifies what each player
knows before making each decision.

Attention

Chess is a full-information game because the current state of
the game is fully known to both players as they make their
decisions. In contrast, Poker is a partial-information game.

The objective specifies the goal of each player.
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Elements of a Game

For a mathematical solution to a game, one further needs to
make assumptions on the player’s rationality, regarding
questions such as:

Will the players always pursue their best interests to fulfill
their objectives? [YES]

Will the players form coalitions? [NO]

Will the players trust each other? [NO]

The answers in square brackets characterize what are usually
called noncooperative games, and will be implicitly assumed
throughout this course.
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Note 1.- Human players

Studying noncooperative solutions for games played by humans
reveals some lack of faith in human nature.

When pursuing this approach one should not be surprised
by finding solutions of questionable ethics.

Noncooperative game theory allows one to find problematic
solutions to games, and often indicates how to fix the games so
that these solutions disappear

Example: mechanism design.

In ENCS problems, players are modeling decision
processes not affected by human reason

one can pursue noncooperative solutions without
questioning their ethical foundation.

Robust engineering designs and evolutionary biology are good
examples of this.
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Cooperative vs Noncooperative Games
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Cooperative vs. Noncooperative Games: Rope-Pulling

The Rope-Pulling game is depicted schematically as

Rules:
- Two players push a mass by exerting on it forces f1 and f2.
- Players exert forces with the same magnitude: |f1| = |f2|.
- Players pull in different directions θ1(t) and θ2(t).
- The game is played for 1 second.

Note:
θ1(t) and θ2(t) correspond to the decisions made by the players.
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Cooperative vs. Noncooperative Games: Rope-Pulling

Assume unit forces and a unit mass. Initially mass is at rest.

According to Newton’s law, the point mass moves according to

ẍ = cos θ1(t) + cos θ2(t), ẋ(0) = 0, x(0) = 0

ÿ = sin θ1(t) + sin θ2(t), ẏ(0) = 0, y(0) = 0

These equations encode the rules of the game: they determine
how the player’s decisions affect the outcome of the game.
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Cooperative vs. Noncooperative Games: Rope-Pulling

Zero-Sum Rope-Pulling Game

Objective (zero-sum):

- P1 wants to maximize x(1)
whereas
- P2 wants to minimize x(1).

Notation: zero-sum-game

A game where players have opposite objectives.

One could also imagine that

P1 wants to maximize x(1)

P2 wants to maximize −x(1)

According to this view the two objectives add up to zero
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Cooperative vs. Noncooperative Games: Rope-Pulling

Zero-Sum Rope-Pulling Game

Objective (zero-sum):

- P1 wants to maximize x(1)
whereas
- P2 wants to minimize x(1).

Solution: the optimal solution for this game is given by

P1 : θ1(t) = 0, ∀t ∈ [0, 1], P2 : θ2(t) = π, ∀t ∈ [0, 1]

This results in no motion: ẍ = ÿ = 0,
leading to: x(1) = y(1) = 0
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Cooperative vs. Noncooperative Games: Rope-Pulling

The following questions arise:
Is it reasonable to pull at all, given that the mass will not move?
Is the optimal solution not to push at all?

This is not the case for two reasons
1 Not pushing is not allowed by the rules of the game: each

player must exert a force of one Newton.
2 Even if not pulling was an option, it is a dangerous choice

for the player that decided to follow this action: the other
player could take advantage of the situation.

Remember: in noncooperative games players do not trust
each other and do not form coalitions.

But why our choice (below) is the optimal solution?

P1 : θ1(t) = 0, ∀t ∈ [0, 1], P2 : θ2(t) = π, ∀t ∈ [0, 1]
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Cooperative vs. Noncooperative Games: Rope-Pulling

Consider now a Non-Zero-Sum Rope-Pulling Game

Objective (non-zero-sum):
- P1 wants to maximize x(1), whereas
- P2 wants to maximize y(1).

Attention: This is no longer a zero-sum game!

Solution (Nash): The optimal solution is given by

P1 : θ1(t) = 0, ∀t ∈ [0, 1], P2 : θ2(t) =
π

2
, ∀t ∈ [0, 1]

This leads to constant accelerations
ẍ = ÿ = 1
and therefore x(1) = y(1) = 1

2

Remember: distance = v0t+ 1
2at

2
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Cooperative vs. Noncooperative Games: Rope-Pulling

This solution has two important properties:

P1.1.- Suppose P1 follows the course of action θ1(t) = 0
throughout the whole time period and therefore

ẍ = 1 + cos θ2(t), ÿ = sin θ2(t), ∀t ∈ [0, 1].

Here, the best course of action for P2 so as to maximize y(1) is
precisely to choose

θ2(t) =
π

2
, ∀t ∈ [0, 1] ⇒ ÿ(t) = 1, ∀t ∈ [0, 1].

Any deviation from this will lead to a smaller value of y(1).

Once P1 decides to stick to its part of the solution, a rational
P2 must necessarily follow its policy.
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Cooperative vs. Noncooperative Games: Rope-Pulling

This solution has two important properties:

P1.2.- Suppose P2 follows the course of action θ2(t) = π
2

throughout the whole time period and therefore

ẍ = cos θ1(t), ÿ = sin θ1(t) + 1, ∀t ∈ [0, 1].

Here, the best course of action for P1 so as to maximize x(1) is
precisely to choose

θ1(t) = 0, ∀t ∈ [0, 1] ⇒ ẍ(t) = 1, ∀t ∈ [0, 1].

Any deviation from this will lead to a smaller value of x(1).

Once P2 decides to stick to its part of the solution, a rational
P1 must necessarily follow its policy.
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Cooperative vs. Noncooperative Games: Rope-Pulling

A pair of policies that satisfy the above properties is called a
Nash equilibrium solution.

Key feature of a Nash equilibrium solution: it is stable

If the two players start playing at the Nash equilibrium,
none of the players gains from deviating from these policies.

Notation: solution

In games a solution is a set of policy, one for each player, that
jointly satisfy some optimality condition.

Policy: a course or principle of action.
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Cooperative vs. Noncooperative Games: Rope-Pulling

The solution (θ1(t), θ2(t)) = (0, π2 ) also satisfies these properties:

P1.3.- Suppose that P1 follows the course of action θ1(t) = 0
throughout the whole time period.

Regardless of what P2 does, P1 is guaranteed to achieve
x(1) ≥ 0.

No other policy for P1 can guarantee a larger value for x(1)
regardless of what P2 does.

Note: Even if P2 pulls against P1, which is not very rational
but possible.
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Cooperative vs. Noncooperative Games: Rope-Pulling

The solution (θ1(t), θ2(t)) = (0, π2 ) also satisfies these properties:

P1.4.- Suppose P2 follows the course of action θ2(t) = π
2

throughout the whole time period.

Regardless of what P1 does, P2 is guaranteed to achieve
y(1) ≥ 0.

No other policy for P2 can guarantee a larger value for y(1)
regardless of what P1 does.

In view of this, the two policies are also called security
policies for the corresponding player.

The solution is interesting in two distinct senses

these policies form a Nash equilibrium, per P1.1 and P1.2

these policies are also security policies, per P1.3 and P1.4
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Cooperative vs. Noncooperative Games: Rope-Pulling

Solution (cooperative): consider the following solution

P1 : θ1(t) =
π

4
, ∀t ∈ [0, 1], P2 : θ2(t) =

π

4
, ∀t ∈ [0, 1]

leading to constant accelerations ẍ = ÿ =
√

2, and therefore

x(1) = y(1) =

√
2

2
>

1

2

This policy is interesting: both players do strictly better
than with the Nash policies.

However, this is not a Nash policy!
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Cooperative vs. Noncooperative Games: Rope-Pulling

Suppose that P1 decides to follow this action θ1(t) = π
4 , then

ẍ =

√
2

2
+ cos θ2(t), ÿ =

√
2

2
+ sin θ2(t), ∀t ∈ [0, 1]

In this case, the best action for P2 to maximize y(1) is to choose

θ2(t) =
π

2
, ∀t ∈ [0, 1],

instead of her assigned policy, because this will lead to

ÿ =

√
2

2
+ 1 and y(1) =

√
2 + 2

4
>

√
2

2

Unfortunately for P1, this also leads to

ẍ =

√
2

2
and x(1) =

√
2

4
<

1

2
<

√
2

2
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Cooperative vs. Noncooperative Games: Rope-Pulling

The cooperative solution is a dangerous choice for P1

a greedy P2 will get P1 even worse than with the Nash
policy that led to x(1) = 1

2

Similarly, the cooperative solution is a dangerous choice for P2.

The cooperative solution is not a Nash equilibrium solution,

despite the fact that both players can do better than with
the Nash solution.

Cooperative game theory deals with Cooperative Solutions:

players negotiate to reach a mutually beneficial solution.

requires faith/trust among the players.

Solutions arising from cooperation are not robust with respect
to cheating by one of the players.
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Cooperative vs. Noncooperative Games: Rope-Pulling

For certain classes of games, noncooperative solutions
coincide with cooperative solutions,

by pursuing ones selfish interests one actually helps other
players in achieving their goals.

These games are highly desirable from a social perspective.

It is possible to reshape the reward structure of a game to
make this happen.

in economics this is often achieved through pricing,
taxation, or other incentives/deterrents.

in engineering it relates to Mechanism Design.

A network administrator can minimize the total
interference between “selfish” wireless users by
carefully charging their use of the shared medium.
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Cooperative vs. Noncooperative Games: Rope-Pulling

Note 2. Pareto-optimal Solution

A cooperative solution like

P1 : θ1(t) =
π

4
, ∀t ∈ [0, 1], P2 : θ2(t) =

π

4
, ∀t ∈ [0, 1]

is called Pareto-optimal because it is not possible to further
improve the gain of one player without reducing the
gain of the other

For the non-zero-sum rope-pulling game, all Pareto-optimal
solutions are found by solving the constrained optimization

max
θ1,θ2
{x(1) : y(1) ≥ α} with α ∈ R

Pareto-optimal solutions are generally not unique

different α result in different pareto-optimal solutions.
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Cooperative vs. Noncooperative Games: Rope-Pulling

Note: In some cases, all Pareto-optimal solutions can be found
by solving unconstrained optimization problems.

For this example, all Pareto-optimal solutions are found by
solving

max
θ1,θ2

βx(1) + (1− β)y(1)

and picking different values for β in the interval [0,1].
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Robust Designs
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Robust Designs

Game theory is used in engineering applications as tool to solve
design problems that do not start as a game.

Step 1: take the original design problem.

Step 2: “discover” a game theoretical formulation that
leads to a desirable solution.

In these games, the players are

the system designer

the opponent: a fictitious entity that tries to challenge
the choices of the designer.
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Robust Designs: Resistive Circuit

Goal: pick a resistor so that the current i = 1
R is as close as

possible to 1.

Challenge: for a resistor with nominal resistance = Rnom, the
actual resistance R may exhibit an error up to 10%, i.e.,

R = (1 + δ)Rnom

where δ is an unknown scalar in the interval [-0.1,0.1].
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Robust Designs: Resistive Circuit

This is a robust design problem: a game between the
circuit designer and an unforgiving nature that does her
best to foil the designer’s objective:

P1: the circuit designer. Picks the nominal resistance
Rnom to minimize the current error

e =

∣∣∣∣ 1

R
− 1

∣∣∣∣ =

∣∣∣∣ 1

(1 + δ)Rnom
− 1

∣∣∣∣
P2: nature. Picks the value of δ ∈ [−0.1, 0.1] to
maximize the same current error e.

Robust designs lead to non-cooperative zero-sum games
- cooperative solutions make no sense in robust design

problems.
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Robust Designs: Resistive Circuit

Solution (security): A possible solution is

P1 : Rnom =
100

99
, P2 : δ = 0.1

which leads to a current error of

e(Rnom, δ) =

∣∣∣∣ 1

(1 + δ)Rnom
− 1

∣∣∣∣ =

∣∣∣∣ 99

110
− 1

∣∣∣∣ =

∣∣∣∣99− 110

110

∣∣∣∣ = 0.1

This solution exhibits the following properties

P1.5 Once P1 picks Rnom = 100
99 , the error e will be maximized

for δ = 0.1 and is exactly e = 0.1.

P1.6 But, if P2 picks δ = 0.1, then P1 can pick

1

(1 + δ)Rnom
= 1⇔ Rnom =

1

1 + δ
=

1

1.1
=

100

110

and get the error exactly equal to zero.
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Robust Designs: Resistive Circuit

Conclusion: The solution

P1 : Rnom =
100

99
, P2 : δ = 0.1

is not a safe choice for P2

consequently, this solution is not a Nash equilibrium.

However, this solution is safe for P1

then, Rnom = 100
99 is a security policy for the designer

Note: As defined, this game does not have a Nash equilibrium.

It does however have a generalized form of Nash equilibrium
that we will encounter in Lecture 4.
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Mixed Policies
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Mixed Policies: Network Routing

Consider the computer network, and suppose that our goal is
to send data packets from source to destination.

The 3-hop shortest path
from source to destination is
highlighted.

Usually, one selects a path that minimizes the number of hops
transversed by the packets. However, this formulation

does not explore all possible paths, and

tends to create hot spots.
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Mixed Policies: Network Routing

Alternative formulation: consider two players

P1 is the router: selects the path for the packets

P2 is an attacker: selects a link to be disabled

The two players make their decisions independently and
without knowing the choice of the other player.

Objective:

P1: wants to maximize the probability that a packet
reaches its destination.

P2: wants to minimize this probability.

Note: P2 is purely fictitious and its role is to drive P1 away
from routing decisions that would lead to hot spots.
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Mixed Policies: Network Routing

Solution: A saddle-point solution for which 50% of the packets
will reach their destination.

Stochastic routing policy
Percentages indicate how traffic
should be distributed among
the outgoing links of a node.

Stochastic attack policy
Percentages indicate the
probability by which the
attacker will disable that link.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 01 - Noncooperative Games



Elements of a Game Cooperative vs Noncooperative Games Robust Designs Mixed Policies Nash Equilibrium Practice Exercise

Mixed Policies: Network Routing

This solution exhibits two key properties

P1.7 Once player P1 picks her policy, P2’s policy is the best
response from this players perspective.

P1.8 Once player P2 picks her policy, P1s policy is the best
response from this players perspective.

These are also security policies

Each policy guarantees for that player a percentage of
packet arrivals no worse than 50%.

No other policies can lead to a guaranteed better
percentage of packet arrivals.

Note: no worse may mean larger than or smaller than,
depending on the player (router or attacker).
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Mixed Policies: Network Routing

The solution policies are mixed policies

they call for each player to randomize among several
alternatives with carefully chosen probabilities.

For this game, there are no Nash equilibrium that do not
involve some form of randomization.

Notation: policies that do not require randomization are
called pure policies.
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Nash Equilibrium
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Nash Equilibrium

(meta) Definition 1.1: Nash Equilibrium

Consider a game with two Players P1, P2.

A pair of policies (π1,π2) is said to be a Nash equilibrium if
the following two conditions holds:

C1 : If P1 uses the policy π1, then there is no admissible
policy for P2 that does strictly better than π2.

C2 : If P2 uses the policy π2, then there is no admissible
policy for P1 that does strictly better than π1.

Attention!
Condition C1 does not require π2 to be strictly better than all
the other policies, just no worse. Similarly for π1 in C2.
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Nash Equilibrium

Definition 1.1 leaves open several issues that can only be
resolved in the context of specific games:

1 What exactly is a policy?
2 What is the set of admissible policies against which π1 and
π2 must be compared?

3 What is meant by a policy doing strictly better than
another?

The key feature of a Nash equilibrium is that it is stable

if P1 and P2 start playing at the Nash equilibrium (π1,π2),
none of the players gain from deviating from these policies.

Attention!
The definition of Nash equilibrium does not preclude the
existence of multiple Nash equilibria for the same game.

Also, there are games for which there are no Nash equilibria
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Practice Exercise
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Practice Exercise 1.1.

Find other saddle-point solutions to the previously
introduced network routing game
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Solution to Exercise 1.1.

Another saddle-point solution that also satisfies the Nash
equilibrium conditions C1.1-C1.2 in the (meta) Definition 1.1.

Stochastic routing policy
Percentages indicate how traffic
should be distributed among
the outgoing links of a node.

Stochastic attack policy
Percentages indicate the
probability by which the
attacker will disable that link.
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End of Lecture

01 - Noncooperative Games

Questions?
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