
Mixed Policies Mixed Action Spaces Mixed Security Policies and Saddle-Point Equilibrium General Zero-Sum Games Practice Exercises

COSC-6590/GSCS-6390

Games: Theory and Applications

Lecture 04 - Mixed Policies

Luis Rodolfo Garcia Carrillo

School of Engineering and Computing Sciences
Texas A&M University - Corpus Christi, USA

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 04 - Mixed Policies



Mixed Policies Mixed Action Spaces Mixed Security Policies and Saddle-Point Equilibrium General Zero-Sum Games Practice Exercises

Table of contents

1 Mixed Policies: Rock-Paper-Scissor

2 Mixed Action Spaces

3 Mixed Security Policies and Saddle-Point Equilibrium

4 General Zero-Sum Games

5 Practice Exercises

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 04 - Mixed Policies



Mixed Policies Mixed Action Spaces Mixed Security Policies and Saddle-Point Equilibrium General Zero-Sum Games Practice Exercises

Mixed Policies

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 04 - Mixed Policies



Mixed Policies Mixed Action Spaces Mixed Security Policies and Saddle-Point Equilibrium General Zero-Sum Games Practice Exercises

Mixed Policies: Rock-Paper-Scissor

Making the following associations

actions =


rock ≡ 1
paper ≡ 2
scissor ≡ 3

outcomes =


P1 wins ≡ −1 minimizer
P2 wins ≡ +1 maximizer
draw ≡ 0

The rock-paper-scissor game can be viewed as a matrix

A =

 0 +1 −1
−1 0 +1
+1 −1 0


︸ ︷︷ ︸

P2 choices

P1 choices

For this game
- P1’s security level: V̄ (A) = +1. Any row is a security policy.
- P2’s security level: V (A) = −1. Any col is a security policy.

Conclusion: we have a strict inequality: V (A) < V̄ (A)
- game has no pure saddle-point equilibria.
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Mixed Policies: Rock-Paper-Scissor

So far we studied pure policies

choices of particular actions

perhaps based on some observation

We now introduce mixed policies

choosing a probability distribution to select actions

perhaps as a function of observations

Players select their actions randomly according to a previously
selected probability distribution.
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Mixed Policies: Rock-Paper-Scissor

Consider a game specified by an m× n matrix A

m actions for P1 and n actions for P2.

A mixed policy for P1 is a set of numbers

{y1, y2, . . . , ym},
m∑
i=1

yi = 1 yi ≥ 0, ∀i ∈ {1, 2, . . . ,m},

yi: probability that P1 uses to select the action i ∈ {1, 2, . . . ,m}.

A mixed policy for P2 is a set of numbers

{z1, z2, . . . , zn},
n∑
j=1

zj = 1 zj ≥ 0, ∀j ∈ {1, 2, . . . , n},

zj : probability that P2 uses to select the action j ∈ {1, 2, . . . , n}.
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Mixed Policies: Rock-Paper-Scissor

Assumption: random selections by both players are done
statistically independently.

Due to randomness, the same pair of mixed policies will lead
to different outcomes as one plays the game again and again.

With mixed policies, players try to optimize the expected
outcome of the game:

J =

m∑
i=1

n∑
j=1

aij Prob (P1 selects i and P2 selects j)

Players make selections independently, then this simplifies to

J =
∑
i,j

aij Prob (P1 selects i) Prob (P2 selects j) =
∑
i,j

aijyizj = y′Az
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Mixed Policies: Rock-Paper-Scissor

J = y′Az

where y and z are the following column vectors:

y :=


y1

y2
...
ym

 z :=


z1

z2
...
zn


Notation.- symbol “ ′ ” denotes matrix/vector transpose.

Objective (mixed policies):
P1 wants to minimize the expected outcome J = y′Az.
P2 wants to maximize the expected outcome J = y′Az.
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Mixed Policies: Common Interpretations

Interpretation 1: Repeated game paradigm

P1 and P2 face each other multiple times.

In each game they choose their actions randomly according to
preselected mixed policies (independently from each other, and
from game to game).

Goal: minimize/maximize the cost/reward averaged over all
the games played.

Paradigm appropriate for games in

economics, e.g., in the advertising campaign game or the
tax-payers auditing game;

political/social engineering, e.g., in the crime/war
deterrence games or the worker’s compensation game.
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Mixed Policies: Common Interpretations

Interpretation 2: Large population paradigm

There is large population of players P1, and an equally large
population of players P2.

Players play pure policies, but percentage of players that play
each pure policy matches the probabilities of the mixed policies.

Two players are selected randomly from each population
(independently), they play against each other.

Goal: select a good mix for the populations so as to
minimize/maximize the expected cost/reward.

Paradigm appropriate for games in

tax auditing, crime deterrence, workers compensation, and
some robust design problems.
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Mixed Action Spaces
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Mixed Action Spaces

Consider a game specified by an m× n matrix A

m actions for P1 and n actions for P2.

With pure policies, the (pure) action spaces for P1 and P2

consist of the finite sets

{1, 2, . . . ,m} and {1, 2, . . . , n}

With mixed policies, P1 and P2 choose distributions so their
(mixed) action spaces consist of (infinite) continuous sets

Y :=

{
y ∈ Rm :

∑
i

yi = 1, yi ≥ 0, ∀i
}
, Z :=

z ∈ Rn :
∑
j

zj = 1, zj ≥ 0, ∀j


Sets such as Y and Z are called (probability) simplexes.
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Mixed Action Spaces

Attention!

Pure policies still exist within the mixed action spaces.

For example, the vector[
0 1 0 · · · 0

]′ ∈ Y
is the pure policy that consists of picking action 2, because

the probability y2 of picking this action is one

the probabilities yi, i 6= 2 of picking other actions are all
equal to zero.
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Mixed Security Policies and Saddle-Point
Equilibrium

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 04 - Mixed Policies



Mixed Policies Mixed Action Spaces Mixed Security Policies and Saddle-Point Equilibrium General Zero-Sum Games Practice Exercises

Mixed Security Policies and Saddle-Point Equilibrium

Definition 4.1 (Mixed security policy).

Consider a matrix game A. The average security level for P1

(the minimizer) is

V̄m(A) := min
y∈Y︸︷︷︸

minimize cost assuming
worst choice by P2

max
z∈Z︸︷︷︸

worst choice by P2

from P1’s perspective

y′Az

Corresponding mixed security policy for P1: any y∗ that
achieves the desired average security level, i.e.,

max
z∈Z

y∗′Az = V̄m(A)︸ ︷︷ ︸
y∗ achieves the minimum

:= min
y∈Y

max
z∈Z

y′Az

∈ since there may be several y∗ that achieve the minimum.
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Mixed Security Policies and Saddle-Point Equilibrium

Definition 4.1 (Mixed security policy).

Conversely, the average security level for P2 (maximizer) is

V m(A) := max
z∈Z︸︷︷︸

maximize reward assuming
worst choice by P1

min
y∈Y︸︷︷︸

worst choice by P1

from P2’s perspective

y′Az

Corresponding mixed security policy for P2: any z∗ that
achieves the desired average security level, i.e.,

min
y∈Y

y∗′Az = V m(A)︸ ︷︷ ︸
z∗ achieves the maximum

:= max
z∈Z

min
y∈Y

y′Az

∈ since there may be several z∗ that achieve the maximum.
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Mixed Security Policies and Saddle-Point Equilibrium

Definition 4.2 (Mixed saddle-point equilibrium).

A pair of policies (y∗, z∗) ∈ Y × Z is a mixed saddle-point
equilibrium if

y∗′Az∗ ≤ y′Az∗, ∀y ∈ Y
y∗′Az∗ ≥ y∗′Az, ∀z ∈ Z

and y∗′Az∗ is the mixed saddle-point value.

These equations are often re-written as

y∗′Az ≤ y∗′Az∗ ≤ y′Az∗, ∀y ∈ Y, ∀z ∈ Z
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Mixed Security Policies and Saddle-Point Equilibrium

Proposition 4.1 (Security levels/policies).
For every (finite) matrix A, the following properties hold:

P4.1 Average security levels are well defined and unique.

P4.2 Both players have mixed security policies (not necessarily
unique).

P4.3 The average security levels always satisfy

V (A)︸ ︷︷ ︸
maxj mini aij

≤ V m(A)︸ ︷︷ ︸
maxz miny y′Az

≤ V̄m(A)︸ ︷︷ ︸
miny maxz y′Az

≤ V̄ (A)︸ ︷︷ ︸
mini maxj aij

Consequence: when there is a pure saddle-point equilibrium,
V (A) = V̄ (A) are equal, and the average security levels are
exactly the same as the (pure) security levels.
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Mixed Security Policies and Saddle-Point Equilibrium

The inequality expresses a feature of mixed policies

V (A)︸ ︷︷ ︸
maxj mini aij

≤ V m(A)︸ ︷︷ ︸
maxz miny y′Az

≤ V̄m(A)︸ ︷︷ ︸
miny maxz y′Az

≤ V̄ (A)︸ ︷︷ ︸
mini maxj aij

They lead to security levels that are better than those of
pure policies for both players.

Left-most inequality means that the mixed security level
for the maximizer is larger than the pure security level

Right-most inequality means that the mixed security level
for the minimizer is smaller than the pure security level.
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Mixed Security Policies and Saddle-Point Equilibrium

Take for example

V m(A) = max
z∈Z

min
y∈Y

y′Az

Property P4.1 states that the min and max in V m(A) are
achieved at specific points in Y and Z, respectively.

we are minimizing/maximizing a continuous function over
a compact set (i.e., bounded and closed)

Weierstrass’ Theorem guarantees that such a min/max
always exists at some point in the set.

The max is achieved at some point z∗ ∈ Z, then z∗ can be used
in a security policy for P2 (maximizer), which justifies P4.2.

The same reasoning applies for V̄m(A) and the corresponding
mixed security policy.
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Mixed Security Policies and Saddle-Point Equilibrium

Inequalities in property P4.3 are straightforward to prove.

Start with the one in the left-hand side:

V m(A) := max
z∈Z

min
y∈Y

y′AZ ≥ max
z∈{e1,e2,...,en}

min
y∈Y

y′Az = max
j

min
y∈Y

y′ Aej︸︷︷︸
jth column of A

where {e1, e2, . . . , en} ⊂ Z are the canonical basis of Rn.

But then

V m(A) ≥ max
j

min
y∈Y

y′


a1j

a2j
...

amj

 = max
j

min
y∈Y

m∑
i=1

yiaij

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 04 - Mixed Policies



Mixed Policies Mixed Action Spaces Mixed Security Policies and Saddle-Point Equilibrium General Zero-Sum Games Practice Exercises

Mixed Security Policies and Saddle-Point Equilibrium

An equality useful to optimize a linear function over a simplex:

min
y∈Y

m∑
i=1

yiaij = min
i
aij

minimum is achieved by placing all the probability weight at
the value of i for which the constant aij is the smallest.

We therefore conclude that

V m(A) ≥ max
j

min
i
aij =: V (A)

which is the left-most inequality in P4.3.

The right-most inequality can be proved in an analogous
fashion, but starting with V̄m(A), instead of V m(A).
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Mixed Security Policies and Saddle-Point Equilibrium

The middle inequality can be proved in exactly the same way
that we used to prove that V (A) ≥ V̄ (A)

V m(A) = min
y
y′Az∗︸ ︷︷ ︸

where z∗ is a mixed
security policy

≤ min
y

max
z
y′Az =: V̄m(A)
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Mixed Security Policies and Saddle-Point Equilibrium

Note 5. To prove P4.1, apply Weierstrass’ Theorem twice
1 Note y′Az is a continuous function of y (for each fixed z),

which is being minimized over the compact set Y.
By Weierstrass Theorem, there exists a y ∈ Y at which the
minimum is achieved, i.e.,

y∗′Az = min
y∈Y

y′Az =: f(z)

Value of the minimum f(z) is a continuous function of z.
2 Use the fact that f(z) is continuous and is being

maximized over the compact set Z.
By Weierstrass Theorem, there exists a z ∈ Z at which the
maximum is achieved, i.e.,

f(z∗) = max
z∈Z

f(z) = max
z∈Z

min
y∈Y

y′Az
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Mixed Security Policies and Saddle-Point Equilibrium

Note 6.

Lemma 4.1 (Optimization of linear functions over simplexes).

Consider a probability simplex

X :=

{
x ∈ Rm :

∑
i

xi = 1, xi ≥ 0, ∀i

}
and a linear function f of the form

f(x) =

m∑
i=1

aixi

Then

min
x∈X

f(x) = min
i∈{1,2,...,m}

ai, max
x∈X

f(x) = max
i∈{1,2,...,m}

ai

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 04 - Mixed Policies



Mixed Policies Mixed Action Spaces Mixed Security Policies and Saddle-Point Equilibrium General Zero-Sum Games Practice Exercises

Mixed Security Policies and Saddle-Point Equilibrium

The existence of a mixed saddle-point equilibrium is closely
related to the average security levels for the two players.

Theorem 4.1 (Mixed saddle-point equilibrium vs. security
levels).

A matrix game defined by A has a mixed saddle-point
equilibrium if and only if

V m(A) := max
z∈Z

min
y∈Y

y′Az = min
y∈Y

max
z∈Z

y′Az =: V̄m(A)

Notation. In short, the min and max commute.
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Mixed Security Policies and Saddle-Point Equilibrium

In particular

1 if (y∗, z∗) is a mixed saddle-point equilibrium then y∗ and
z∗ are mixed security policies for P1 and P2, respectively
and the equation is equal to the mixed saddle-point value.

2 if the equation holds and y∗ and z∗ are mixed security
policies for P1 and P2, then (y∗, z∗) is a mixed saddle-point
equilibrium and its value is equal to the equation.

Consequence: all mixed saddle-point equilibria must have the
same mixed saddle-point values, which is called the value of
the game, and denoted by Vm(A).

Key difference between pure and mixed policies

the equation in Theorem 4.1 holds for every matrix A.

This fact is known as the Minimax Theorem.
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Mixed Security Policies and Saddle-Point Equilibrium

Example 4.1 (Network routing game).

A matrix game between the router P1 and the attacker P2 if we
make the following associations

P1’s actions:

{
send packet through link 1 ≡ 1
send packet through link 2 ≡ 2

P2’s actions:

{
attack link 1 ≡ 1
attack link 2 ≡ 2

outcomes:

{
packet arrives ≡ −1 P1 wins
packet is intercepted ≡ +1 P2 wins
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Mixed Security Policies and Saddle-Point Equilibrium

The associatons lead to the following matrix

A =

[
+1 −1
−1 +1

]
︸ ︷︷ ︸
P2 choices

}
P1 choices

with pure security levels

V (A) = −1, V̄ (A) = +1,

showing there are no saddle-point equilibria in pure policies.

For mixed policies, we have (using Lemma 4.1)

V m(A) = max
z∈Z

min
y∈Y

y′Az = max
z∈Z

min
y∈Y

y1(z1 − z2) + y2(z2 − z1)

= max
z∈Z

min{z1 − z2, z2 − z1}
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Mixed Security Policies and Saddle-Point Equilibrium

To compute the maximum over z, note that

min{z1 − z2, z2 − z1}
{

= 0 z1 = z2

< 0 z1 6= z2

The maximum over z is obtained for z1 = z2 = 1
2 , leading to

V m(A) = 0

with a mixed security policy for P2 given by z∗ :=
[

1
2

1
2

]
.

To compute the minimum over y, we have

V̄m(A) = min
y∈Y

max
z∈Z

y′Az = min
y∈Y

max
z∈Z

z1(y1 − y2) + z2(y2 − y1)

= min
y∈Y

max{y1 − y2, y2 − y1} = 0

with a mixed security policy for P1 given by y∗ :=
[

1
2

1
2

]
.
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Mixed Security Policies and Saddle-Point Equilibrium

The result shows that

V m(A) = V̄m(A) = 0

Conlusion: (From Theorem 4.1) this game has a mixed
saddle-point equilibrium (y∗, z∗), which consists of each player
selecting each of the links with equal probabilities.
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Mixed Security Policies and Saddle-Point Equilibrium

Example 4.2 (Rock-paper-scissors). Consider a matrix
representation of the rock-paper-scissors game

A =

 0 +1 −1
−1 0 +1
+1 −1 0


︸ ︷︷ ︸

P2 choices

P1 choices

For this game V (A) = −1 and V̄ (A) = 1.

For mixed policies, using Lemma 4.1, we conclude that

V m(A) = max
z∈Z

min
y∈Y

y′Az

= max
z∈Z

min
y∈Y

y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2)

= max
z∈Z

min {z2 − z3, z3 − z1, z1 − z2}
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Mixed Security Policies and Saddle-Point Equilibrium

V m(A) = max
z∈Z

min {z2 − z3, z3 − z1, z1 − z2}

which is maximized with z1 = z2 = z3 = 1
3 . This means that

V m(A) = 0

corresponding to a mixed security policy for P2 given by
z∗ :=

[
1
3

1
3

1
3

]
. Similarly,

V̄m(A) = min
y∈Y

max
z∈Z

y′Az = · · · = 0

with a mixed security policy for P1 given by y∗ :=
[

1
3

1
3

1
3

]
L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 04 - Mixed Policies



Mixed Policies Mixed Action Spaces Mixed Security Policies and Saddle-Point Equilibrium General Zero-Sum Games Practice Exercises

Mixed Security Policies and Saddle-Point Equilibrium

Note. Why? To get the maximum over z we must have z2 ≥ z3

since otherwise z2 − z3 < 0 and we would get the minimum
smaller than zero. For similar reasons, we must also have
z3 ≥ z1 and z1 ≥ z2. The only way to satisfy these three
inequalities simultaneously is to have all zj equal to each other.

The result shows that

V m(A) = V̄m(A) = 0

This game has a mixed saddle-point equilibrium (y∗, z∗)

each player selecting rock, paper, or schissors with equal
probabilities.

Note. A lot of work to conclude what every 7 year old learns in
the school yard.
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General Zero-Sum Games
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General Zero-Sum Games

Consider a two-player zero-sum game G.
P1 and P2 select policies within action spaces Γ1 and Γ2.

For a pair of policies γ ∈ Γ1, σ ∈ Γ2, J(γ, σ) is the outcome of
the game when P1 uses policy γ and P2 uses policy σ.

P1 wants to minimize outcome J(γ, σ), P2 wants to maximize it.

Note: we now allow the outcome J to depend on the policies in
an arbitrary fashion.

we need to adapt previous definitions of security policies
and levels.
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General Zero-Sum Games

Definition 4.3 (Security policy). The security level for P1

(the minimizer) is defined by

V̄Γ1,Γ2 := inf
γ∈Γ1︸︷︷︸

minimize cost assuming
worst choice by P2

sup
σ∈Γ2︸︷︷︸

worst choice by P2

from P1’s perspective

J(γ, σ)

Security policy for P1

any policy γ∗ ∈ Γ1 for which the infimum is achieved, i.e.,

sup
σ∈Γ2

J(γ∗, σ) = V̄Γ1,Γ2(G)︸ ︷︷ ︸
γ∗ achieves the infimum

:= inf
γ∈Γ1

sup
σ∈Γ2

J(γ, σ)
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General Zero-Sum Games

Notation.
- The infimum of a set is its largest lower bound
- The supremum of a set is its smallest upper bound.
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General Zero-Sum Games

The security level for P2 (the maximizer) is defined by

V Γ1,Γ2
:= sup

σ∈Γ2︸︷︷︸
maximize rewards assuming

worst choice by P1

inf
γ∈Γ1︸︷︷︸

worst choice by P1

from P2’s perspective

J(γ, σ)

Security policy for P2

any policy σ∗ ∈ Γ2 for which the supremum is achieved, i.e.,

sup
γ∈Γ1

J(γ, σ∗) = V Γ1,Γ2
(G)︸ ︷︷ ︸

σ∗ achieves the maximum

:= sup
σ∈Γ2

inf
γ∈Γ1

J(γ, σ)
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General Zero-Sum Games

Definition 4.4 (Saddle-point equilibrium).

A pair of policies (γ∗, σ∗) ∈ Γ1 × Γ2 is called a saddle-point
equilibrium if

J(γ∗, σ∗) ≤ J(γ, σ∗), ∀γ ∈ Γ1

J(γ∗, σ∗) ≥ J(γ∗, σ), ∀σ ∈ Γ2

and J(γ∗, σ∗) is the saddle-point value.

These equations are often re-written as

J(γ∗, σ) ≤ J(γ∗, σ∗) ≤ J(γ, σ∗), ∀γ ∈ Γ1, σ ∈ Γ2
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General Zero-Sum Games

Notation 1 (Infimum and supremum). The infimum of a set
S ⊂ R is the largest number y∗ such that

y∗ ≤ s, ∀s ∈ S

When there is no number y∗ that satisfies the equation, the
infimum is defined to be −∞. Under this definition every set
S ⊂ R has an infimum, but the infimum may not belong to the
set. When the infimum does belong to the set it is said to be a
minimum. For example,

inf
{
e−x : x ≥ 0

}
= 0, inf

{
e−x : x ≤ 0

}
= min

{
e−x : x ≤ 0

}
= 1

Note that the infimum of the set in the left hand side is not a
minimum since 0 does not belong to the set, but the infimum of
the set in the right hand side does belong to the set.
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General Zero-Sum Games

The supremum of a set L ⊂ R is the smallest number z∗ such
that

z∗ ≥ s, ∀s ∈ S

When there is no number z∗ that satisfies the equation, the
supremum is defined to be +∞. Under this definition every set
S ⊂ R has a supremum. When the supremum does belong to
the set it is said to be a maximum.
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General Zero-Sum Games

Proposition 4.2 (Security levels/policies/saddle-point
equilibria). These properties hold for every zero-sum game:

P4.4 Security levels are well defined and unique.

Note. However, security levels may take infinite values
(including −∞ or +∞) and security policies may not exist.

P4.5 The security levels always satisfy the following inequality:

V Γ1,Γ2
(G) := sup

σ∈Γ2

inf
γ∈Γ1

J(γ, σ) ≤ inf
γ∈Γ1

sup
σ∈Γ2

J(γ, σ) =: V̄Γ1,Γ2(G)

P4.6 When V Γ1,Γ2
(G) = V̄Γ1,Γ2(G) and there exist security

policies γ∗ and σ∗ for P1 and P2, then(σ∗, γ∗) is a saddle-point
equilibrium.
Its value J(σ∗, γ∗) is equal to V Γ1,Γ2

(G) = V̄Γ1,Γ2(G).
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General Zero-Sum Games

P4.7 If there exists a saddle-point equilibrium (σ∗, γ∗) then γ∗

and σ∗ are security policies for P1 and P2, respectively and
V Γ1,Γ2

(G) = V̄Γ1,Γ2(G) = J(σ∗, γ∗).

P4.8 If (σ∗1, γ
∗
1) and (σ∗2, γ

∗
2) are both saddle-point equilibria

then (σ∗1, γ
∗
2) and (σ∗2, γ

∗
1) are also saddle-point equilibria.

All these equilibria have exactly the same value.

Notation. A consequence of this is that all saddle-point
equilibria must have exactly the same saddle-point values,
which is called the value of the game and is denoted by VΓ1,Γ2 .

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 04 - Mixed Policies



Mixed Policies Mixed Action Spaces Mixed Security Policies and Saddle-Point Equilibrium General Zero-Sum Games Practice Exercises

General Zero-Sum Games

Example 4.3 (Resistive circuit design). Recall the robust
design problem for a resistive circuit discussed in Section 1.3.

P1: designer. Picks the nominal resistance Rnom to
minimize the current error

e(Rnom, δ) =

∣∣∣∣ 1

R
− 1

∣∣∣∣ =

∣∣∣∣ 1

(1 + δ)Rnom
− 1

∣∣∣∣
P2: nature. Picks value of δ ∈ [−0.1, 0.1] to maximize e.

We saw that the policy

π∗1 : P1 selects Rnom =
100

99

is a security policy for P1 and leads to a security level V̄ = 0.1

for any value of δ ∈ [−0.1, 0.1], P1 could get the error to be
equal to 0 by an appropriate choice of Rnom.
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General Zero-Sum Games

The security level for P2 is V = 0 and any policy is a security
policy for P2. In view of the fact that

V = 0 < V̄ = 0.1

Conclusion: game does not have a saddle-point equilibrium.

Suppose resistors are being drawn from a box that contains{
45% of the resistors with δ = −0.1
55% of the resistors with δ = +0.1

When P1 uses the policy π1 and a resistor is drawn randomly
from the box, the expected value of the error is

E[e] = 0.45×

∣∣∣∣∣ 1

(1− 0.1)100
99

− 1

∣∣∣∣∣+ 0.55×

∣∣∣∣∣ 1

(1 + 0.1)100
99

− 1

∣∣∣∣∣ = 0.1
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General Zero-Sum Games

We can view this box of resistors as P2’s mixed policy, by
imagining that nature picked the distribution of resistors in the
box in order to maximize the expected value of the error.
This corresponds to the following mixed policy for P2

π∗2 : P2 selects

{
−0.1 with probability 0.45
+0.1 with probability 0.55

We can state the following:
1. Restricting to pure policies, the security levels are

V = 0 < V̄ = 0.1

The policy π∗1 is a security policy for P1 and any policy for P2 is
a security policy for this player. The gap between the security
levels indicates that there are no pure saddle points.
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General Zero-Sum Games

2. Enlarging the universe of policies to consider mixed policies,
the average security levels of the game become

V m = V̄m = 0.1

Observation: we allowed P2 to raise her security level to 0.1.

The policy π∗1 is still a mixed security policy for P1, but now π∗2
is a mixed security policy for P2.

The equality between the security levels indicates that (π∗1, π
∗
2)

is a mixed saddle-point equilibrium.

To regard π∗1 as a mixed policy, think of this policy as

the probability distribution for Rnom that places all
probability mass at 100

99 .
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General Zero-Sum Games

The fact that Rnom = 100
99 is part of a mixed saddle-point

equilibrium, tells us that this design is not conservative in the
sense that:
1. selection of Rnom = 100

99 guarantees that the current error
remains below 0.1 for any resistor R with error below 10%, and
2. there exists a population of resistors with error below 10%.
Extracting R randomly from this population, we get E[e] = 0.1.

If the security policy Rnom = 100
99 was not a mixed saddle-point

equilibrium then there would be no underlying distribution of
resistors that could lead to E[e] = 0.1.

indicating that by choosing Rnom = 100
99 we were

protecting our design against a phantom worst-case
distribution of resistances that actually did not exist.
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Practice Exercises

4.1 (Resistive circuit design). Consider the robust design
problem. Show that the average security levels of this game are

V m = V̄m = 0.1

and that the policies (π∗1, π
∗
2) defined by

π∗1 :P1 selects Rnom =
100

99

π∗2 :P2 selects

{
−0.1 with probability 0.45
+0.1 with probability 0.55

form a mixed saddle-point equilibrium.

Hint: Show that π∗1 is a pure security policy for P1, leading to
V̄ = 0.1. Next, verify that π∗1 and π∗2 satisfy the general
conditions for a mixed saddle-point equilibrium.
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Practice Exercises

Solution to Exercise 4.1.
To show that Rnom = 100

99 is a pure security policy for P1 with
security level equal to 0.1, we start by computing

V̄ = min
Rnom≥0

max
δ∈[−0.1,0.1]

∣∣∣∣ 1

(1 + δ)Rnom
− 1

∣∣∣∣
= min

Rnom≥0
max

δ∈[−0.1,0.1]

{
1

(1+δ)Rnom
− 1 δ ≤ 1

Rnom−1

1− 1
(1+δ)Rnom

δ > 1
Rnom−1

Top branch is monotone decreasing with respect to δ.
Bottom branch is monotone increasing with respect to δ.

Inner maximization is achieved at the extreme points for δ.
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We conclude that

V̄ = min
Rnom≥0



max
{

1
(1−0.1)Rnom

− 1, 1− 1
(1+0.1)Rnom

}
−0.1 ≤ 1

Rnom
− 1, 0.1 > 1

Rnom
− 1

1
(1−0.1)Rnom

− 1 −0.1 ≤ 1
Rnom

− 1, 0.1 ≤ 1
Rnom

− 1

1− 1
(1+0.1)Rnom

−0.1 > 1
Rnom

− 1, 0.1 > 1
Rnom

− 1

= min
Rnom≥0



max
{

1
(1−0.1)Rnom

− 1, 1− 1
(1+0.1)Rnom

}
Rnom ∈

(
10
11
, 10

9

]
1

(1−0.1)Rnom
− 1 Rnom ≤ 10

11

1− 1
(1+0.1)Rnom

Rnom > 10
9

Considering the three branches separately, optimum is achieved
at the top branch when

1

(1− 0.1)Rnom
− 1 = 1− 1

(1 + 0.1)Rnom
⇔ Rnom =

100

99

This shows that π∗1 is a security policy for P1, corresponding to
a security level of V̄ = 0.1
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To prove (π1, π2) is a mixed saddle-point equilibrium, show that
π∗1 and π∗2 satisfy the required conditions.

Since π∗1 is a pure security policy for P1 with security level equal
to 0.1, when P1 uses this policy the error in the current satisfies

e

(
100

99
, δ

)
=

∣∣∣∣∣ 1

(1 + δ)100
99

− 1

∣∣∣∣∣ ≤ 0.1 ∀δ ∈ [−0.1, 0.1]

This means that, for any mixed policy π∗2 for P2, we must have

Eπ∗1 ,π2

[
e

(
100

99
, δ

)]
≤ 0.1, ∀π2

where π∗1, π
∗
2 means we are fixing the (pure) policy π1 and

taking δ to be a random variable with distribution π2.
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Suppose we fix P2’s policy to be π∗2 and consider an arbitrary
policy π1 for P1, corresponding to a distribution for Rnom with
probability density function f(r). Then

Eπ1,π
∗
2

=0.45

∫ ∞
0

e(r,−0.1)f(r)dr + 0.55

∫ ∞
0

e(r, 0.1)f(r)dr

=

∫ 10
9

0
0.45

(
1

(1− 0.1)r
− 1

)
fr(dr) +

∫ ∞
10
9

0.45

(
1−

1

(1− 0.1)r

)
f(r)dr

+

∫ 10
11

0
0.55

(
1

(1 + 0.1)r
− 1

)
fr(dr) +

∫ ∞
10
11

0.55

(
1−

1

(1 + 0.1)r

)
f(r)dr

=

∫ 10
11

0

(
0.45

(
1

(1− 0.1)r
− 1

)
+ 0.55

(
1

(1 + 0.1)r
− 1

))
f(r)dr

+

∫ 10
9

10
11

(
0.45

(
1

(1− 0.1)r
− 1

)
+ 0.55

(
1−

1

(1 + 0.1)r

))
f(r)dr

+

∫ ∞
10
9

(
0.45

(
1−

1

(1− 0.1)r

)
+ 0.55

(
1−

1

(1 + 0.1)r

))
f(r)dr
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Eπ1,π
∗
2

=

∫ 10
11

0

(
1

r
− 1

)
f(r)dr +

∫ 10
9

10
11

1

10
f(r)dr +

∫ ∞
10
9

(
1−

1

r

)
f(r)dr

Since r ≤ 10

11
⇒ 1

r
− 1 ≥ 11

10
− 1 =

1

10

And r ≥ 10

9
⇒ 1− 1

r
≥ 1− 9

10
=

1

10
Conclusion: Eπ1,π∗2

is minimized by selecting the probability

mass for the distribution π1 to be in interval [10
11 ,

10
9 ], leading to

max
π

Eπ1,π∗2
=

1

10
= 0.1 = Eπ∗1 ,π∗2

This and Eπ∗1 ,π2 establish that π∗1 and π∗2 satisfy the conditions
for a saddle-point equilibrium.
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End of Lecture

04 - Mixed Policies

Questions?
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