Theorem StatementConvex HullSeparating Hyperplane TheoremOn the Way to Prove the Minimax Theor00000000000000000

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 05 - Minimax Theorem

Luis Rodolfo Garcia Carrillo

School of Engineering and Computing Sciences Texas A&M University - Corpus Christi, USA

L.R. Garcia Carrillo

TAMU-CC

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor

Table of contents

- 1 Theorem Statement
- 2 Convex Hull
- **3** Separating Hyperplane Theorem
- On the Way to Prove the Minimax Theorem
- 5 Proof of the Minimax Theorem
- 6 Consequences of the Minimax Theorem
- 7 Practice Exercise

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor
● 00			

Theorem Statement

L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 05 - Minimax Theorem

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor
000			

Theorem Statement

Consider a game specified by an $m \times n$ matrix A.

• m actions for P_1 , and n actions for P_2 .

$$A = \underbrace{\begin{bmatrix} \vdots \\ \cdots & a_{ij} & \cdots \\ \vdots & \end{bmatrix}}_{P_2 \text{ choices (maximizer)}} P_1 \text{ choices (minimizer)}$$

Theorem 5.1 (Minimax). For every matrix A, the **average** security levels of both players coincide, i.e.,

$$\underline{V}_m(A) := \max_{z \in \mathcal{Z}} \min_{y \in \mathcal{Y}} y'Az = \min_{y \in \mathcal{Y}} \max_{z \in \mathcal{Z}} y'Az =: \bar{V}_m(A)$$

Module 05 is devoted to this result.

L.R. Garcia Carrillo

TAMU-CC

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor
000			

Theorem Statement

From Property P4.3

$$\underline{V}_m(A) \le \overline{V}_m(A)$$

If the inequality were strict, there would be a constant such that

$$\underline{V}_m(A) < c < \bar{V}_m(A)$$

Proof of **Theorem 5.1** consists in showing this is not possible. We will show that for any *c*, at least one of the players can

guarantee a security level of c.

$$c \leq \underline{V}_m(A)$$
 or $\overline{V}_m(A) \leq c$

To achieve this we will use a key result in convex analysis.

L.R. Garcia Carrillo

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor
	0000		

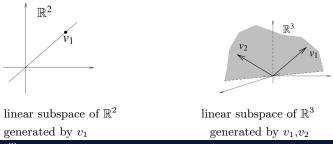
L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 05 - Minimax Theorem

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor
	0000		

Given k vectors $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$, the linear subspace generated by these vectors is the set

span
$$(v_1, v_2, \dots, v_k) = \left\{ \sum_{i=1}^k \alpha_i v_i : \alpha_i \in \mathbb{R} \right\} \subset \mathbb{R}^n$$

which is represented graphically as



TAMU-CC

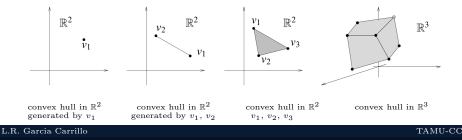
L.R. Garcia Carrillo

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor
	0000		

The (closed) convex hull generated by these vectors is the set

$$co(v_1, v_2, \dots, v_k) = \left\{ \sum_{i=1}^k \alpha_i v_i : \alpha_i \ge 0, \sum_{i=1}^k \alpha_i = 1 \right\} \subset \mathbb{R}^n$$

which is represented graphically as



Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor
	0000		

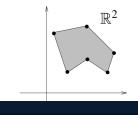
The convex hull is always a **convex set** in the sense that

$$x_1, x_2 \in co(v_1, v_2, \dots, v_k) \Rightarrow \frac{\lambda x_1 + (1 - \lambda) x_2}{2} \in co(v_1, v_2, \dots, v_k), \ \forall \lambda \in [0, 1]$$

i.e., if x_1 and x_2 belong to the set, then any point in the line segment between x_1 and x_2 also belongs to the set.

Conclusion: all sets in previous figure are convex.

But this is not the case for the set below (a nonconvex set)



Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor
		● ○ ○	

Separating Hyperplane Theorem

L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 05 - Minimax Theorem

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor
		000	

Separating Hyperplane Theorem

An **hyperplane** in \mathbb{R}^n is a set of the form

$$\mathcal{P} := \left\{ x \in \mathbb{R}^n : v'(x - x_0) = 0 \right\}$$

- $x_0 \in \mathbb{R}^n$ is a point that belongs to the hyperplane
- $v \in \mathbb{R}^n$ a vector called the **normal to the hyperplane**.

An (open) half-space in \mathbb{R}^n n is a set of the form

$$\mathcal{H} := \left\{ x \in \mathbb{R}^n : v'(x - x_0) > 0 \right\}$$

- $x_0 \in \mathbb{R}^n$ is a point in the boundary of \mathcal{H}
- $v \in \mathbb{R}^n$ is the **inwards-pointing normal** to the half-space.

Each hyperplane partitions the whole space \mathbb{R}^n into two half-spaces with symmetric normals.

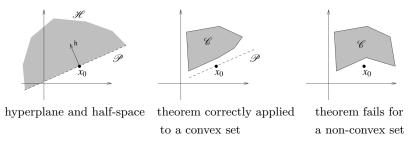
L.R. Garcia Carrillo

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor
		000	

Separating Hyperplane Theorem

Theorem 5.2 (Separating Hyperplane). For every convex set C and a point x_0 not in C, there exists an hyperplane \mathcal{P} that contains x_0 but does not intersect C. Consequently, the set C is fully contained in one of the half spaces defined by \mathcal{P} .

Theorem (a key result in convex analysis) is illustrated below



L.R. Garcia Carrillo

TAMU-CC

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor
			0000000

L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 05 - Minimax Theorem

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor
			0000000

Prove that for any number c, we either have

$$\underline{V}_m(A) := \max_{z \in \mathcal{Z}} \min_{y \in \mathcal{Y}} y' Az \ge c \quad \text{or} \quad \bar{V}_m(A) := \min_{y \in \mathcal{Y}} \max_{z \in \mathcal{Z}} y' Az \le c$$

To prove this, show that either there exists a $z^* \in \mathcal{Z}$ such that

$$y'Az^* \ge c, \quad \forall y \in \mathcal{Y} \Rightarrow \min_{y \in \mathcal{Y}} y'Az^* \ge c \Rightarrow \underline{V}_m(A) := \max_{z \in \mathcal{Z}} \min_{y \in \mathcal{Y}} y'Az \ge c$$

or there exists a $y^* \in \mathcal{Y}$ such that

$$y^{*\prime}Az \leq c, \quad \forall z \in \mathcal{Z} \Rightarrow \max_{z \in \mathcal{Z}} y^{*\prime}Az \leq c \Rightarrow \bar{V}_m(A) := \min_{y \in \mathcal{Y}} \max_{z \in \mathcal{Z}} y^\prime Az \leq c$$

The **Theorem of the Alternative for Matrices**, proves exactly this for the special case c = 0.

L.R. Garcia Carrillo

TAMU-CC

Theorem 5.3 (Theorem of the Alternative for Matrices). For every $m \times n$ matrix M, one of the following statements must necessarily hold:

- there exists some $y^* \in \mathcal{Y}$ such that $y^{*'}Mz \leq 0, \forall z \in \mathcal{Z}$
- **2** there exists some $z^* \in \mathcal{Z}$ such that $y'Mz^* \ge 0, \forall y \in \mathcal{Y}$

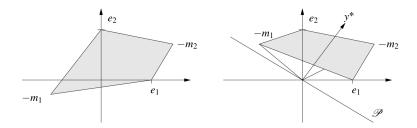
Note. We can regard

- y^* as a policy for P_1 that guarantees an outcome no larger than zero (since it guarantees $\bar{V}_m(A) \leq 0$)
- z^* as a policy for P_2 that guarantees an outcome no smaller than zero (since it guarantees $\underline{V}_m(A) \ge 0$.)

Theorem StatementConvex HullSeparating Hyperplane TheoremOn the Way to Prove the Minimax Theor000000000000

On the Way to Prove the Minimax Theorem

Proof. Consider separately the cases of whether or not the vector 0 belongs to the convex hull C of the columns of $[-M_{m \times n} \ I_m]$ where I_m denotes the identity matrix in \mathbb{R}^m



0 in the convex hull \mathcal{C}

0 not in the convex hull C, with separating hyperplane \mathcal{P} and inner-pointing normal y^*

Suppose that 0 belongs to the convex hull C of the columns of $[-M_{m \times n} \ I_m]$, therefore there exist scalars \bar{z}_j , $\bar{\eta}_j$ such that

$$\begin{bmatrix} -M_{m \times n} & I_m \end{bmatrix} \begin{bmatrix} \bar{z}_1 \\ \vdots \\ \bar{z}_n \\ \bar{\eta}_1 \\ \vdots \\ \bar{\eta}_m \end{bmatrix} = 0 \qquad \bar{z}_j \ge 0, \quad \bar{\eta}_j \ge 0, \quad \sum_j \bar{z}_j + \sum_j \bar{\eta}_j = 1.$$

Note that $\sum_{j} \bar{z}_{j} \neq 0$ since otherwise all the \bar{z}_{j} would have to be exactly equal to zero and then so would all the $\bar{\eta}_{j}$, because of the left-hand side equality.

L.R. Garcia Carrillo

Theorem StatementConvex HullSeparating Hyperplane TheoremOn the Way to Prove the Minimax Theor0000000000000

On the Way to Prove the Minimax Theorem

Defining

$$z^* := \frac{1}{\sum_j \bar{z}_j} \begin{bmatrix} \bar{z}_1 \\ \vdots \\ \bar{z}_n \end{bmatrix} \qquad \qquad \eta^* := \frac{1}{\sum_j \bar{\eta}_j} \begin{bmatrix} \bar{\eta}_1 \\ \vdots \\ \bar{\eta}_m \end{bmatrix}$$

we conclude $z^* \in \mathcal{Z}$ and $Mz^* = \eta^*$.

Then, for every $y \in \mathcal{Y}$

$$y'Mz^* = y'\eta^* \ge 0$$

which shows that **Statement 2** holds

• recall that all entries of y and η^* are non negative.

L.R. Garcia Carrillo

TAMU-CC

Suppose the 0 vector does not belong to the convex hull C of the columns of $[-M_{m \times n} \ I_m]$.

Use the **Separating Hyperplane Theorem** to conclude that there must exist an half space \mathcal{H} with 0 in its boundary that fully contains \mathcal{C} .

Denoting by y^* the inwards-pointing normal to \mathcal{H} , we have

$$\mathcal{H} = \left\{ x \in \mathbb{R}^m : y^{*'} x > 0 \right\} \supset \mathcal{C}$$

Therefore, for every x in the convex hull C of the columns of $[-M_{m \times n} \ I_m]$, we have

$$y^*x > 0$$

L.R. Garcia Carrillo

Theorem StatementConvex HullSeparating Hyperplane TheoremOn the Way to Prove the Minimax Theor00000000000000000

On the Way to Prove the Minimax Theorem

We conclude that for every $\bar{z}_j \ge 0$, $\bar{\eta}_j \ge 0$, $\sum_j \bar{z}_j + \sum_j \bar{\eta}_j = 1$

$$y^*[-M_{m \times n} \quad I_m] \begin{bmatrix} \bar{z}_1 \\ \vdots \\ \bar{z}_n \\ \bar{\eta}_1 \\ \vdots \\ \bar{\eta}_m \end{bmatrix} > 0$$

In particular, for convex combinations with all the $\eta_j = 0$, we obtain

$$y^*M\bar{z} < 0, \qquad \qquad \forall \bar{z} \in \mathcal{Z}$$

L.R. Garcia Carrillo

TAMU-CC

On the other hand, from the convex combinations with $\eta_j = 1$ and all other coefficients equal to zero, we conclude that

$$y_j^* > 0, \qquad \forall j$$

In case $\sum_{j} y_{j}^{*} = 1$, then $y^{*} \in \mathcal{Y}$ (which is the hyperplane normal) provides the desired vector y^{*} for **Statement 1**.

Otherwise, we simply need to rescale the normal by a positive constant to get $\sum_j y_j^* = 1$.

Note: rescaling by a positive constant does not change the validity of $y^*M\bar{z} < 0, \forall \bar{z} \in \mathcal{Z}$.

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor

L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 05 - Minimax Theorem

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor

Pick c, and show that either there exists a $z^* \in \mathbb{Z}$ such that

$$y'Az^* \geq c, \ \ \forall y \in \mathcal{Y} \Rightarrow \min_{y \in \mathcal{Y}} y'Az^* \geq c \Rightarrow \underline{V}_m(A) := \max_{z \in \mathcal{Z}} \min_{y \in \mathcal{Y}} y'Az \geq c$$

or there exists a $y^* \in \mathcal{Y}$ such that

$$y^{*\prime}Az \leq c, \quad \forall z \in \mathcal{Z} \Rightarrow \max_{z \in \mathcal{Z}} y^{*\prime}Az \leq c \Rightarrow \bar{V}_m(A) := \min_{y \in \mathcal{Y}} \max_{z \in \mathcal{Z}} y'Az \leq c$$

This is achieved by applying **Theorem 5.3** to the matrix

$$M = A - c\mathbf{1}$$

- where **1** denotes a $m \times n$ matrix with all entries equal to 1.

Property:
$$y'\mathbf{1}z = 1$$
 for every $y \in \mathcal{Y}$ and $z \in \mathcal{Z}$.

L.R. Garcia Carrillo

When **Statement 1** in **Theorem 5.3** holds, there exists some $y^* \in \mathcal{Y}$ such that

$$y^{*'}(A-c\mathbf{1})z = y^{*'}Az - c \le 0, \quad \forall z \in \mathcal{Z}$$

and the previous $\overline{V}_m(A)$ equation holds.

When Statement 2 in Theorem 5.3 holds, there exists some $z^* \in \mathcal{Z}$ such that

$$y'(A - c\mathbf{1})z^* = y'Az^* - c \ge 0, \quad \forall y \in \mathcal{Y}$$

and the previous $\underline{V}_m(A)$ equation holds.

L.R. Garcia Carrillo

TAMU-CC

If the Minimax Theorem did not hold, we could pick c such that

 $\max_{z \in \mathcal{Z}} \min_{y \in \mathcal{Y}} y' A z < c < \min_{y \in \mathcal{Y}} \max_{z \in \mathcal{Z}} y' A z$

which contradicts the equations for $\underline{V}_m(A)$ and $\overline{V}_m(A)$.

Therefore there must **not be a gap** between the $\max_{z} \min_{y}$ and the $\min_{y} \max_{z}$.

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor

Consequences of the Minimax Theorem

L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 05 - Minimax Theorem

Consequences of the Minimax Theorem

Combining **Theorem 4.1** with the **Minimax Theorem 5.1** we conclude:

Corollary 5.1. Consider a game defined by a matrix A:

 $\mathbf{P5.1}$ A mixed saddle-point equilibrium always exist and

$$\underline{V}_m(A) := \max_{z \in \mathcal{Z}} \min_{y \in \mathcal{Y}} y'Az = \min_{y \in \mathcal{Y}} \max_{z \in \mathcal{Z}} y'Az =: \bar{V}_m(A)$$

P5.2 If y^* and z^* are mixed security policies for P_1 and P_2 , then (y^*, z^*) is a mixed saddle-point equilibrium and its value y^*/Az^* is equal to the equation in **P5.1**.

L.R. Garcia Carrillo

Consequences of the Minimax Theorem

P5.3 If (y^*, z^*) is a mixed saddle-point equilibrium then y^* and z^* are mixed security policies for P_1 and P_2 , and the equation in **P5.1** is equal to the mixed saddle-point value $y^{*'}Az^*$.

P5.4 If (y_1^*, z_1^*) and (y_2^*, z_2^*) are mixed saddle-point equilibria then (y_1^*, z_2^*) and (y_2^*, z_1^*) are also mixed saddle-point equilibria and

$$y_1^{*'}Az_1^* = y_2^{*'}Az_2^* = y_1^{*'}Az_2^* = y_2^{*'}Az_1^*$$

L.R. Garcia Carrillo

TAMU-CC

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor

L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 05 - Minimax Theorem

5.1 (Symmetric games).

A game defined by a matrix A is called symmetric if A is skew symmetric, i.e., if A' = -A.

For such games, show that the following statements hold:

- $V_m(A) = 0$
- If y^* is a mixed security policy for P_1 , then y^* is also a security policy for P_2 and vice-versa.
- If (y^*, z^*) is a mixed saddle-point equilibrium then (z^*, y^*) is also a mixed saddle-point equilibrium.

Hint: Make use of the two facts below:

$$\max_{x} f(x) = -\min_{x} (-f(x)), \quad \min_{w} \max_{x} f(x) = -\max_{w} \min_{x} (-f(x))$$

Note that the Rock-Paper-Scissors game is symmetric.

L.R. Garcia Carrillo

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor

Solution to Exercise 5.1.

1. Denoting by y^* a mixed security policy for P_1 , we have that

$$V_m(A) := \min_y \max_z y' A z = \max_z y^{*'} A z$$

Since y'Az is a scalar and A' = -A, we conclude that

$$y'Az = (y'Az)' = z'A'y = -z'Ay, \quad y^{*'}Az = \dots = -z'Ay^{*}$$

Using this in $V_m(A)$, we conclude that

$$V_m(A) = \min_y \max_z (-z'Ay) = \max_z (-z'Ay^*)$$

L.R. Garcia Carrillo

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor

We now use the **hint** to obtain

$$V_m(A) = -\max_y \min_z z'Ay = -\min_z z'Ay^*$$

However, in mixed games $\max_{y} \min_{z} z' A y$ is also equal to $V_m(A)$ and therefore we have

$$V_m(A) = -V_m(A) \Rightarrow V_m(A) = 0$$

L.R. Garcia Carrillo

TAMU-CC

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor

2. On the other hand, since we just saw in using the hint in $V_m(A)$ that

$$\max_{y} \min_{z} z' A y = \min_{z} z' A y^*$$

we have that y^* is indeed a mixed security policy for P_2 . To prove the converse, we follow a similar reasoning starting from the previous equation

$$V_m(A) := \min_y \max_z y' A z = \max_z y^{*'} A z$$

but with $\max_y \min_z$ instead of $\min_z \max_y$. This results in the proof that if y^* is a mixed security policy for P_2 then it is also a mixed security policy for P_1 .

L.R. Garcia Carrillo

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor

3. If (y^*, z^*) is a mixed saddle-point equilibrium then both y^* and z^* are mixed security policies for P_1 and P_2 , respectively.

However, from the previous results we conclude that these are also security policies for P_2 and P_1 , respectively, which means that (z^*, y^*) is indeed a mixed saddle-point equilibrium.

Theorem Statement	Convex Hull	Separating Hyperplane Theorem	On the Way to Prove the Minimax Theor

End of Lecture

05 - Minimax Theorem

Questions?

L.R. Garcia Carrillo TAMU-CC COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 05 - Minimax Theorem