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Theorem Statement
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Theorem Statement

Consider a game specified by an m× n matrix A.

m actions for P1, and n actions for P2.

A =


...

· · · aij · · ·
...


︸ ︷︷ ︸
P2 choices (maximizer)

P1 choices (minimizer)

Theorem 5.1 (Minimax). For every matrix A, the average
security levels of both players coincide, i.e.,

V m(A) := max
z∈Z

min
y∈Y

y′Az = min
y∈Y

max
z∈Z

y′Az =: V̄m(A)

Module 05 is devoted to this result.
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Theorem Statement

From Property P4.3

V m(A) ≤ V̄m(A)

If the inequality were strict, there would be a constant such that

V m(A) < c < V̄m(A)

Proof of Theorem 5.1 consists in showing this is not possible.

We will show that for any c, at least one of the players can
guarantee a security level of c.

c ≤ V m(A) or V̄m(A) ≤ c

To achieve this we will use a key result in convex analysis.
L.R. Garcia Carrillo TAMU-CC
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Convex Hull
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Convex Hull

Given k vectors v1, v2, . . . , vk ∈ Rn, the linear subspace
generated by these vectors is the set

span(v1, v2, . . . , vk) =

{
k∑

i=1

αivi : αi ∈ R

}
⊂ Rn

which is represented graphically as

linear subspace of R2 linear subspace of R3

generated by v1 generated by v1,v2
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Convex Hull

The (closed) convex hull generated by these vectors is
the set

co(v1, v2, . . . , vk) =

{
k∑

i=1

αivi : αi ≥ 0,

k∑
i=1

αi = 1

}
⊂ Rn

which is represented graphically as

convex hull in R2 convex hull in R2 convex hull in R2 convex hull in R3

generated by v1 generated by v1, v2 v1, v2, v3
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Convex Hull

The convex hull is always a convex set in the sense that

x1, x2 ∈ co(v1, v2, . . . , vk)⇒ λx1 + (1− λ)x2
2

∈ co(v1, v2, . . . , vk), ∀λ ∈ [0, 1]

i.e., if x1 and x2 belong to the set, then any point in the line
segment between x1 and x2 also belongs to the set.

Conclusion: all sets in previous figure are convex.

But this is not the case for the set below (a nonconvex set)
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Separating Hyperplane Theorem
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Separating Hyperplane Theorem

An hyperplane in Rn is a set of the form

P :=
{
x ∈ Rn : v′(x− x0) = 0

}
x0 ∈ Rn is a point that belongs to the hyperplane

v ∈ Rn a vector called the normal to the hyperplane.

An (open) half-space in Rn n is a set of the form

H :=
{
x ∈ Rn : v′(x− x0) > 0

}
x0 ∈ Rn is a point in the boundary of H
v ∈ Rn is the inwards-pointing normal to the half-space.

Each hyperplane partitions the whole space Rn into two
half-spaces with symmetric normals.
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Separating Hyperplane Theorem

Theorem 5.2 (Separating Hyperplane). For every convex set C
and a point x0 not in C, there exists an hyperplane P that
contains x0 but does not intersect C. Consequently, the set C is
fully contained in one of the half spaces defined by P.

Theorem (a key result in convex analysis) is illustrated below

hyperplane and half-space theorem correctly applied theorem fails for

to a convex set a non-convex set
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On the Way to Prove the Minimax Theorem
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On the Way to Prove the Minimax Theorem

Prove that for any number c, we either have

V m(A) := max
z∈Z

min
y∈Y

y′Az ≥ c or V̄m(A) := min
y∈Y

max
z∈Z

y′Az ≤ c

To prove this, show that either there exists a z∗ ∈ Z such that

y′Az∗ ≥ c, ∀y ∈ Y ⇒ min
y∈Y

y′Az∗ ≥ c⇒ V m(A) := max
z∈Z

min
y∈Y

y′Az ≥ c

or there exists a y∗ ∈ Y such that

y∗′Az ≤ c, ∀z ∈ Z ⇒ max
z∈Z

y∗′Az ≤ c⇒ V̄m(A) := min
y∈Y

max
z∈Z

y′Az ≤ c

The Theorem of the Alternative for Matrices, proves
exactly this for the special case c = 0.
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On the Way to Prove the Minimax Theorem

Theorem 5.3 (Theorem of the Alternative for Matrices).
For every m× n matrix M , one of the following statements
must necessarily hold:

1 there exists some y∗ ∈ Y such that y∗′Mz ≤ 0, ∀z ∈ Z
2 there exists some z∗ ∈ Z such that y′Mz∗ ≥ 0, ∀y ∈ Y

Note. We can regard

y∗ as a policy for P1 that guarantees an outcome no larger
than zero (since it guarantees V̄m(A) ≤ 0)

z∗ as a policy for P2 that guarantees an outcome no smaller
than zero (since it guarantees V m(A) ≥ 0.)
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On the Way to Prove the Minimax Theorem

Proof. Consider separately the cases of whether or not the
vector 0 belongs to the convex hull C of the columns of
[−Mm×n Im] where Im denotes the identity matrix in Rm

0 in the convex hull C 0 not in the convex hull C, with separating

hyperplane P and inner-pointing normal y∗
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On the Way to Prove the Minimax Theorem

Suppose that 0 belongs to the convex hull C of the columns of
[−Mm×n Im], therefore there exist scalars z̄j , η̄j such that

[−Mm×n Im]



z̄1
...
z̄n
η̄1
...
η̄m


= 0 z̄j ≥ 0, η̄j ≥ 0,

∑
j

z̄j +
∑
j

η̄j = 1.

Note that
∑

j z̄j 6= 0 since otherwise all the z̄j would have to be
exactly equal to zero and then so would all the η̄j , because of
the left-hand side equality.
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On the Way to Prove the Minimax Theorem

Defining

z∗ :=
1∑
j z̄j

 z̄1
...
z̄n

 η∗ :=
1∑
j η̄j

 η̄1
...
η̄m


we conclude z∗ ∈ Z and Mz∗ = η∗.

Then, for every y ∈ Y

y′Mz∗ = y′η∗ ≥ 0

which shows that Statement 2 holds

recall that all entries of y and η∗ are non negative.
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On the Way to Prove the Minimax Theorem

Suppose the 0 vector does not belong to the convex hull C of
the columns of [−Mm×n Im].

Use the Separating Hyperplane Theorem to conclude that
there must exist an half space H with 0 in its boundary that
fully contains C.

Denoting by y∗ the inwards-pointing normal to H, we have

H =
{
x ∈ Rm : y∗′x > 0

}
⊃ C

Therefore, for every x in the convex hull C of the columns of
[−Mm×n Im], we have

y∗x > 0
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On the Way to Prove the Minimax Theorem

We conclude that for every z̄j ≥ 0, η̄j ≥ 0,
∑

j z̄j +
∑

j η̄j = 1

y∗[−Mm×n Im]



z̄1
...
z̄n
η̄1
...
η̄m


> 0

In particular, for convex combinations with all the ηj = 0, we
obtain

y∗Mz̄ < 0, ∀z̄ ∈ Z
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On the Way to Prove the Minimax Theorem

On the other hand, from the convex combinations with ηj = 1
and all other coefficients equal to zero, we conclude that

y∗j > 0, ∀j

In case
∑

j y
∗
j = 1, then y∗ ∈ Y (which is the hyperplane

normal) provides the desired vector y∗ for Statement 1.

Otherwise, we simply need to rescale the normal by a positive
constant to get

∑
j y
∗
j = 1.

Note: rescaling by a positive constant does not change the
validity of y∗Mz̄ < 0, ∀z̄ ∈ Z.
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Proof of the Minimax Theorem
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Proof of the Minimax Theorem

Pick c, and show that either there exists a z∗ ∈ Z such that

y′Az∗ ≥ c, ∀y ∈ Y ⇒ min
y∈Y

y′Az∗ ≥ c⇒ V m(A) := max
z∈Z

min
y∈Y

y′Az ≥ c

or there exists a y∗ ∈ Y such that

y∗′Az ≤ c, ∀z ∈ Z ⇒ max
z∈Z

y∗′Az ≤ c⇒ V̄m(A) := min
y∈Y

max
z∈Z

y′Az ≤ c

This is achieved by applying Theorem 5.3 to the matrix

M = A− c1

- where 1 denotes a m× n matrix with all entries equal to 1.

Property: y′1z = 1 for every y ∈ Y and z ∈ Z .

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 05 - Minimax Theorem



Theorem Statement Convex Hull Separating Hyperplane Theorem On the Way to Prove the Minimax Theorem Proof of the Minimax Theorem Consequences of the Minimax Theorem Practice Exercise

Proof of the Minimax Theorem

When Statement 1 in Theorem 5.3 holds, there exists some
y∗ ∈ Y such that

y∗′(A− c1)z = y∗′Az − c ≤ 0, ∀z ∈ Z

and the previous V̄m(A) equation holds.

When Statement 2 in Theorem 5.3 holds, there exists some
z∗ ∈ Z such that

y′(A− c1)z∗ = y′Az∗ − c ≥ 0, ∀y ∈ Y

and the previous V m(A) equation holds.
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Proof of the Minimax Theorem

If the Minimax Theorem did not hold, we could pick c such that

max
z∈Z

min
y∈Y

y′Az < c < min
y∈Y

max
z∈Z

y′Az

which contradicts the equations for V m(A) and V̄m(A).

Therefore there must not be a gap between the maxz miny

and the miny maxz.
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Consequences of the Minimax Theorem
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Consequences of the Minimax Theorem

Combining Theorem 4.1 with the Minimax Theorem 5.1
we conclude:

Corollary 5.1. Consider a game defined by a matrix A:

P5.1 A mixed saddle-point equilibrium always exist and

V m(A) := max
z∈Z

min
y∈Y

y′Az = min
y∈Y

max
z∈Z

y′Az =: V̄m(A)

P5.2 If y∗ and z∗ are mixed security policies for P1 and P2,
then (y∗, z∗) is a mixed saddle-point equilibrium and its value
y∗′Az∗ is equal to the equation in P5.1.
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Consequences of the Minimax Theorem

P5.3 If (y∗, z∗) is a mixed saddle-point equilibrium then y∗ and
z∗ are mixed security policies for P1 and P2, and the equation
in P5.1 is equal to the mixed saddle-point value y∗′Az∗.

P5.4 If (y∗1, z
∗
1) and (y∗2, z

∗
2) are mixed saddle-point equilibria

then (y∗1, z
∗
2) and (y∗2, z

∗
1) are also mixed saddle-point equilibria

and

y∗1
′Az∗1 = y∗2

′Az∗2 = y∗1
′Az∗2 = y∗2

′Az∗1
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Practice Exercise
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Practice Exercise

5.1 (Symmetric games).

A game defined by a matrix A is called symmetric if A is skew
symmetric, i.e., if A′ = −A.
For such games, show that the following statements hold:

Vm(A) = 0

If y∗ is a mixed security policy for P1 , then y∗ is also a
security policy for P2 and vice-versa.

If (y∗, z∗) is a mixed saddle-point equilibrium then (z∗, y∗)
is also a mixed saddle-point equilibrium.

Hint: Make use of the two facts below:

max
x

f(x) = −min
x

(−f(x)), min
w

max
x

f(x) = −max
w

min
x

(−f(x))

Note that the Rock-Paper-Scissors game is symmetric.
L.R. Garcia Carrillo TAMU-CC
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Practice Exercise

Solution to Exercise 5.1.

1. Denoting by y∗ a mixed security policy for P1, we have that

Vm(A) := min
y

max
z
y′Az = max

z
y∗′Az

Since y′Az is a scalar and A′ = −A, we conclude that

y′Az = (y′Az)′ = z′A′y = −z′Ay, y∗′Az = · · · = −z′Ay∗

Using this in Vm(A), we conclude that

Vm(A) = min
y

max
z

(−z′Ay) = max
z

(−z′Ay∗)
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Practice Exercise

We now use the hint to obtain

Vm(A) = −max
y

min
z
z′Ay = −min

z
z′Ay∗

However, in mixed games maxy minz z
′Ay is also equal to

Vm(A) and therefore we have

Vm(A) = −Vm(A)⇒ Vm(A) = 0
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Practice Exercise

2. On the other hand, since we just saw in using the hint in
Vm(A) that

max
y

min
z
z′Ay = min

z
z′Ay∗

we have that y∗ is indeed a mixed security policy for P2. To
prove the converse, we follow a similar reasoning starting from
the previous equation

Vm(A) := min
y

max
z
y′Az = max

z
y∗′Az

but with maxy minz instead of minz maxy. This results in the
proof that if y∗ is a mixed security policy for P2 then it is also a
mixed security policy for P1.
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Practice Exercise

3. If (y∗, z∗) is a mixed saddle-point equilibrium then both y∗

and z∗ are mixed security policies for P1 and P2, respectively.

However, from the previous results we conclude that these are
also security policies for P2 and P1, respectively, which means
that (z∗, y∗) is indeed a mixed saddle-point equilibrium.
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End of Lecture

05 - Minimax Theorem

Questions?

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 05 - Minimax Theorem


	Theorem Statement
	Convex Hull
	Separating Hyperplane Theorem
	On the Way to Prove the Minimax Theorem
	Proof of the Minimax Theorem
	Consequences of the Minimax Theorem
	Practice Exercise

