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Completely Mixed Nash Equilibria

Alternative version of the battle of the sexes game

—2 0 -1 3
A= [ 3 1 ]} P; choices B = |: 0 _2 :|} P choices
————— ———
P> choices P> choices

To find a mixed Nash Equilibria (MNE), compute vectors

*

v =i 1wl yi €[0,1]
2¥ =[] 1—27], 21 €[0,1]
for which
YA =y (1—627) +427 — 1 <y (1—627) +4z7 — 1, Yy €10,1]
vy Bz* = 27(2 - 6y}) + 5y —2 < 21(2 —6y}) +5y; — 2, Vz1 €10,1]

true if RHS of: eq. 1 independent of y1; eq. 2 independent of z;
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In particular, by making
1—-62; =0
2—-6y; =0

This leads to the following MNE

N ()

~~

Py (husband) goes to football 66% of times
P, (wife) goes to football 83% of times

—
N
* %

|
W=

and outcomes

(y /AZ Y /BZ ):(421 _1,5y1 —2): <—37_3>
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Completely Mixed Nash Equilibria

This particular NE has the very special property that
YA =y AZ*, Yy ey v'Bz* =y*Bz, V2€Z

then it is also a NE for a bimatrix game defined by the matrices
(—A,—B), i.e., exactly opposite objectives by both players.
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Completely Mixed Nash Equilibria

Definition 10.1 (Completely Mixed Nash Equilibria (MNE)).
A MNE (y*, z*) is completely mixed or an inner-point
equilibria if all probabilities are strictly positive, i.e.,

y;, 25 € (0,1), Vi, j.

Lemma 10.1 (Completely mixed NE).

If (y*, z*) is a completely MNE with outcomes (p*, ¢*) for a
bimatrix game defined by the matrices (A, B), then

Az = p*lmxla B/y* = q*]-nxl’

Consequently, (y*, z*) is also a MNE for the three bimatrix
games defined by (—A,—B), (A,—B) and (—A, B).

TAMU-CC
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Proof of Lemma 10.1.
Assuming that (y*, z*) is a completely MNE for the game
defined by (A, B), we have that

y*' Az* = miny' Az* = min E yi  (Az")i
Y Y - ——
v ith row of Az*

if row ¢ of Az* was strictly larger than any of the others, then
the minimum would be achieved with y; = 0 and the NE would
not be completely mixed. To have a completely MNE, we need
all the rows of Az* exactly equal to each other:

AZ* = p lx1
for some scalar p*, which means that

YA =y A = p, Vy,y" €Y
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Similarly, since none of the z; = 0, then all columns of y*'B
(the rows of B'y*) must be equal to some constant ¢* and then
y"'Bz* =y Bz = ¢*, Vz,2* € Z

Therefore, we conclude (p*, ¢*) is indeed the Nash outcome of
the game and that y*, z* is also a MNE for the three bimatrix
games defined by (—A,—B), (A,—B) and (—A, B).

Corollary 10.1. If (y*, 2*) is a completely mixed SPE for the
zero-sum matrix game defined by A with mixed value p*, then

Az =p Ly Ay =p* 1l

for some scalar p*. Consequently, (y*, z*) is also a mixed SPE
for the zero-sum matrix game —A, and a MNE for the two
(non-zero-sum) bimatrix games (A, A) and (—A4, —A).

TAMU-CC
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Simple: all the equilibria must satisfy (see Lemma 10.1)
B/y* = q*1n><1 ]-ly* =1 Az = p*lmxl 12 =1

a linear system, with n + m + 2 equations and unknowns:
e m entries of y*, n entries of z*, and two scalars p* and ¢*.

After solving, verify that the resulting y* and z* do have
non-zero entries so that they belong to the sets ) and Z

o if they do, we conclude that we have found a NE.

Lemma 10.2. Suppose that the vectors (y*, z*) satisfy the
previous conditions. If all entries of y* and z* are non-negative,
then (y*, 2*) is a mixed NE.
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Example 10.1 (Battle of the sexes BoS).

For the BoS game introduced before, the conditions become
Gl A | PN RN B O B I B A
which is equivalent to

pt =221, 421 =1+4p", ¢ =y, Syj =2+¢"

as we had previously concluded.

However, we now know that this is the unique completely MNE
for this game.
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For the BoS game in Example 9.3, the conditions become
S B | e N R A RN | PV
which is equivalent to

=3z +1=p" 2 —-1=p", —~di+3=¢", 4y —2=¢"

1, 5 ., 1

N 1
:>Z1=§, y1:§7 p=—7, q =5

Note: the completely MNE is not admissible: it is strictly
worse for both players than the pure NE that we found before.

e (1,1) was a pure NE with outcomes (-2, —1)
e (2,2) was a pure NE with outcomes (—1, —2)

TAMU-CC
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A systematic numeric procedure to find MNE for a bimatrix
game defined by two m x n matrices A = [a;;] and B = [b;;]
expressing the outcomes of players P; and Ps.

Py selects a row of A/B and P selects a column of A/B.

MNE can be found by solving a quadratic program
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Theorem 10.1. The pair of policies (y*,2*) € Y x Z is a MNE
with outcome (p*, ¢*) if and only if the tuple (y*, z*,p*,¢*) is a
(global) solution to the following minimization:

minimize Y (A+ B)z—p—q
subject to Az > pl
By > q1
>
. } (yel)
1 } (z € 2)

optimization over m-+n+2 parameters (Y1,Y2,...,Ym ,21,22,---12n,0,q)

This minimization always has a global minima at zero.

: Theory and Applications Lecture 10 - Com
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For zero-sum games, A = —B and minimization is a linear
program that finds both policies in one shot

Observation: efficiency is reduced!

@ solving two small problems is better than solving a large
one.

Attention! Unless A = —B (a zero-sum game), the quadratic
criteria is indefinite because we can select z to be any vector for
which (A + B)z # 0 and then obtain

A positive value with

y=(A+B)z, p=¢=0 = Y (A+B)(A+B)z—p—q=|[(A+B)2|*>0
and a negative value with

y=—(A+B)z, p=¢=0=y(A+B)(A+B)z—p—q=—|l(A+B)z|]” <0
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Numerical Computation of Mixed Nash Equilibria

Here, the quadratic criteria in the minimization is not convex:
numerical solvers can get caught in local minima.

@ Solution: verify that solver found a global minimum.

Easily done: we know that the global minimum is zero.

If solver gets caught in a local minimum

e restart it at a different (typically random) initial point.
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MATLAB® Hint 3 (Quadratic programs).
MATLAB®’s Optimization Toolbox command

[x,val]l] = quadprog(H,c,Ain,bin,Aeq,beq,low,high,x0)
numerically solves quadratic programs of the form

minimum %X’HX + c’x
subject to Ain x < bin
Aeq x = beq
low < x < high
and returns the value val of the minimum and a vector x that
achieves the minimum.

To avoid the corresponding inequality constraints, the vector
@ low: can have some or all entries equal to -Inf

@ high: can have some or all entries equal to +Inf
D illc
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Numerical Computation of Mixed Nash Equilibria

Vector x0: (optional) starting point for the optimization

e important when H is indefinite since in this case the
minimization is not convex and may have local minima

MATLAB® command optimset
o used to set optimization options for quadprog

o allows the selection of the optimization algorithm, which
for the computation of NE, must support non-convex
problems.

The following MATLAB® code can be used to find a MNE to
the bimatrix game defined by A and B, starting from a random
initial condition x0.
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[m,n] = size(A);
x0 = rand(n+m+2,1);

H = [zeros(m,m), A+B, zeros(m,2); A’+B’, zeros(n,n+2); zeros(2, m+n+2)];
[zeros(m+n,1); -1; -1];

o
"

Ain = [zeros(m,m), -A, ones(m,1), zeros(m,1); -B’, zeros(n,n+1), ones(n,1)];
bin = zeros(m+n,1);

Aeq = [ones(1,m), zeros(1,n+2); zeros(1,m), ones(1,n),0 ,0];
beq = [1;1];

low = [zeros(n+m,1); -inf;-inf];
high = [ones(n+m,1);+inf;+inf];

options = optimset(’TolFun’,le-8,’TolX’,1e-8,’TolPCG’,1e-8,’Algorithm’, ’active-set’);

[x,val,exitflag ] = quadprog(H,c,Ain,bin,Aeq,beq,low,high,x0,options)

y = x(1:m)

z = x(m+1:m+n)
p = x(m+n+1)
q = x(m+n+2)

and Applications L
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Proof of Theorem 10.1. Justify two statements separately:
@ a MNE is always a global minimum
@ any global minimum is a MNE

For 1, assume (y*, z*) is a MNE with outcome (p*, ¢*) and show
that (y*, z*,p*, ¢*) is a global minimum. We need to show:

1. Point (y*, z*, p*, ¢*) satisfies all the constraints in the
minimization. Indeed, since

p* — y*/AZ* S y/AZ*, vy c y
in particular for every integer i € {1,2,...,m} if we pick

y=[0 - 010 - 0]’

1 at the ith position

Games: Theory and Applications Lecture 10 - Cor
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we conclude that

ith entry of Az*
and therefore p*lﬁAz*. On the other hand, since
¢ =y"'Bz* <y"Bz, Vzec2Z

we also conclude that ¢*1’<y*B. This entry-wise inequality
between row vectors can be converted into an entry-wise
inequality between column vectors by transposition: ¢*1<B'y*.

Remaining constraints on y* and z* hold since y € Y and z € Z.

Games: Theory and Applications Lecture 10 -
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2. (y*, z*,p*, ¢*) achieves the global minimum, which is zero.
Note that since p* = y*’ Az* and ¢* = y*'Bz* we have

It remains to show that no other vectors y and z that satisfy the
constraints can lead to a value for the criteria lower than zero:

Az >pl Yy Az >p ,
= = —p—q>
{B/qul {Z’BIqu = Y(A+B)z—p—q>0
To prove the converse statement assume (y*, z*, p*, ¢*) is a
global minimum, and show that (y*, 2*) must be a MNE with

outcome (p*, ¢*).

From Theorem 9.1: there is at least one MNE and we have
seen above that this leads to a global minimum equal to zero.
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Therefore any global minimum (y*, z*, p*, ¢*) must satisfy:
y"(A+ B)z" —p* —q* =0 Az*>p*l, z* € Z
B/y*Zq*l, y* ey
From RHS eqgs., we conclude that

YAz >p*, Vyey ZB'y > q", VzeZ
The proof is completed as soon as we show that
y*AZ* — p*’ Z*/B/y* — q*

To achieve this, set y = y* and z = z*, which leads to
y/AZ*_p*ZO’ Z*/B/y*_q*zo
However, because of LHS eq., the two numbers in the LHS of

these ineq. must add up to zero, so they must be equal to zero.
A * and 2*' B'y* = ¢* hold, and this completes the proof.
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Practice Exercises

10.1. Use MATLAB® to compute NE policies for
1. battle of the sexes with

—2 0 . -1 3 .
A= |: 3 _1 :|} P; choices B = |: 0 _2:|} P, choices
P> choices P> choices
2. prisoners’ dilemma with
A= |: (2) 3(8) } P, choices B = |: 3(2) g } P, choices
P> choices P> choices

Solution to Exercise 10.1. The following MATLAB® code
can be used to solve both problems.
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[m,n] = size(A);
x0 = rand(n+m+2,1);

H = [zeros(m,m), A+B, zeros(m,2); A’+B’, zeros(n,n+2); zeros(2, m+n+2)];
[zeros(m+n,1); -1; -1];

o
"

Ain = [zeros(m,m), -A, ones(m,1), zeros(m,1); -B’, zeros(n,n+1), ones(n,1)];
bin = zeros(m+n,1);

Aeq = [ones(1,m), zeros(1,n+2); zeros(1,m), ones(1,n),0 ,0];
beq = [1;1];

low = [zeros(n+m,1); -inf; -inf];
high = [ones(n+m,1);+inf; +inf];

options = optimset(’TolFun’,le-8,’TolX’,1e-8,’TolPCG’,1e-8,’Algorithm’, ’active-set’);

[x,val,exitflag ] = quadprog(H,c,Ain,bin,Aeq,beq,low,high,x0,options)

y = x(1:m)

z = x(m+1:m+n)
p = x(m+n+1)
q = x(m+n+2)
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1. For the BoS game, the code should be preceded by

A = [-2,0; 3,-1];

B = [-1,3; 0,-2];

and we obtain the following global minimum

y =

z =

0.3333
0.6667
0.1667
0.8333

P

q

2. For the prisoners’ dilemma, the

A =[2,30; 0,8]; B =[2,0; 30 ,8];

and we obtain the following global minimum

y =

z =

0.0000
1.0000
0.0000
1.0000

p

q

-0.3333

-0.3333

code should be preceded by

8.0000

8.0000

15% of the time did we get a global minima.
The remaining 85% of the cases, we obtained local minima.
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End of Lecture

10 - Computation of Nash Equilibria for Bimatrix
Games

Questions?
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