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Completely Mixed Nash Equilibria

Alternative version of the battle of the sexes game

A =

[
−2 0

3 −1

]
︸ ︷︷ ︸
P2 choices

}
P1 choices B =

[
−1 3

0 −2

]
︸ ︷︷ ︸
P2 choices

}
P1 choices

To find a mixed Nash Equilibria (MNE), compute vectors

y∗ := [y∗1 1− y∗1]′, y∗1 ∈ [0, 1]

z∗ := [z∗1 1− z∗1 ]′, z∗1 ∈ [0, 1]

for which

y∗′Az∗ = y∗1(1− 6z∗1) + 4z∗1 − 1 ≤ y1(1− 6z∗1) + 4z∗1 − 1, ∀y1 ∈ [0, 1]

y∗′Bz∗ = z∗1(2− 6y∗1) + 5y∗1 − 2 ≤ z1(2− 6y∗1) + 5y∗1 − 2, ∀z1 ∈ [0, 1]

true if RHS of: eq. 1 independent of y1; eq. 2 independent of z1
L.R. Garcia Carrillo TAMU-CC
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Completely Mixed Nash Equilibria

In particular, by making{
1− 6z∗1 = 0
2− 6y∗1 = 0

⇔
{

z∗1 = 1
6

y∗1 = 1
3

This leads to the following MNE

(y∗, z∗) =

([
1

3

2

3

]′
,

[
1

6

5

6

]′)
︸ ︷︷ ︸

P1 (husband) goes to football 66% of times
P2 (wife) goes to football 83% of times

and outcomes

(y∗′Az∗, y∗′Bz∗) = (4z∗1 − 1, 5y∗1 − 2) =

(
−1

3
,−1

3

)
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Completely Mixed Nash Equilibria

This particular NE has the very special property that

y∗′Az∗ = y′Az∗, ∀y ∈ Y y∗′Bz∗ = y∗′Bz, ∀z ∈ Z

then it is also a NE for a bimatrix game defined by the matrices
(−A,−B), i.e., exactly opposite objectives by both players.
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Completely Mixed Nash Equilibria

Definition 10.1 (Completely Mixed Nash Equilibria (MNE)).

A MNE (y∗, z∗) is completely mixed or an inner-point
equilibria if all probabilities are strictly positive, i.e.,
y∗i , z

∗
j ∈ (0, 1), ∀i, j.

Lemma 10.1 (Completely mixed NE).

If (y∗, z∗) is a completely MNE with outcomes (p∗, q∗) for a
bimatrix game defined by the matrices (A,B), then

Az∗ = p∗1m×1, B′y∗ = q∗1n×1,

Consequently, (y∗, z∗) is also a MNE for the three bimatrix
games defined by (−A,−B), (A,−B) and (−A,B).
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Completely Mixed Nash Equilibria

Proof of Lemma 10.1.
Assuming that (y∗, z∗) is a completely MNE for the game
defined by (A,B), we have that

y∗′Az∗ = min
y

y′Az∗ = min
y

∑
i

yi (Az∗)i︸ ︷︷ ︸
ith row of Az∗

if row i of Az∗ was strictly larger than any of the others, then
the minimum would be achieved with yi = 0 and the NE would
not be completely mixed. To have a completely MNE, we need
all the rows of Az∗ exactly equal to each other:

Az∗ = p∗1m×1

for some scalar p∗, which means that

y∗′Az∗ = y′Az∗ = p∗, ∀y, y∗ ∈ Y
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Completely Mixed Nash Equilibria

Similarly, since none of the zj = 0, then all columns of y∗′B
(the rows of B′y∗) must be equal to some constant q∗ and then

y∗′Bz∗ = y∗′Bz = q∗, ∀z, z∗ ∈ Z

Therefore, we conclude (p∗, q∗) is indeed the Nash outcome of
the game and that y∗, z∗ is also a MNE for the three bimatrix
games defined by (−A,−B), (A,−B) and (−A,B).

Corollary 10.1. If (y∗, z∗) is a completely mixed SPE for the
zero-sum matrix game defined by A with mixed value p∗, then

Az∗ = p∗1m×1 A′y∗ = p∗1n×1

for some scalar p∗. Consequently, (y∗, z∗) is also a mixed SPE
for the zero-sum matrix game −A, and a MNE for the two
(non-zero-sum) bimatrix games (A,A) and (−A,−A).
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Computation of Completely Mixed NE
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Computation of Completely Mixed Nash Equilibria

Simple: all the equilibria must satisfy (see Lemma 10.1)

B′y∗ = q∗1n×1 1′y∗ = 1 Az∗ = p∗1m×1 1′z∗ = 1

a linear system, with n + m + 2 equations and unknowns:

m entries of y∗, n entries of z∗, and two scalars p∗ and q∗.

After solving, verify that the resulting y∗ and z∗ do have
non-zero entries so that they belong to the sets Y and Z

if they do, we conclude that we have found a NE.

Lemma 10.2. Suppose that the vectors (y∗, z∗) satisfy the
previous conditions. If all entries of y∗ and z∗ are non-negative,
then (y∗, z∗) is a mixed NE.
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Computation of Completely Mixed Nash Equilibria

Example 10.1 (Battle of the sexes BoS).

For the BoS game introduced before, the conditions become

Az
∗

=

[
−2 0
3 −1

] [
z∗1

1− z∗1

]
=

[
p∗

p∗

]
B
′
y
∗

=

[
−1 0
3 −2

] [
y∗1

1− y∗1

]
=

[
q∗

q∗

]

which is equivalent to

p∗ = −2z∗1 , 4z∗1 = 1 + p∗, q∗ = −y∗1, 5y∗1 = 2 + q∗

⇒ z∗1 =
1

6
, y∗1 =

1

3
, p∗ = q∗ =

1

3

as we had previously concluded.

However, we now know that this is the unique completely MNE
for this game.
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Computation of Completely Mixed Nash Equilibria

For the BoS game in Example 9.3, the conditions become

Az
∗

=

[
−2 1
0 −1

] [
z∗1

1− z∗1

]
=

[
p∗

p∗

]
B
′
y
∗

=

[
−1 3
2 −2

] [
y∗1

1− y∗1

]
=

[
q∗

q∗

]

which is equivalent to

−3z1 + 1 = p∗, z∗1 − 1 = p∗, −4y∗1 + 3 = q∗, 4y∗1 − 2 = q∗

⇒ z∗1 =
1

2
, y∗1 =

5

8
, p∗ = −1

2
, q∗ =

1

2

Note: the completely MNE is not admissible: it is strictly
worse for both players than the pure NE that we found before.

(1, 1) was a pure NE with outcomes (−2,−1)

(2, 2) was a pure NE with outcomes (−1,−2)
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Numerical Computation of MNE
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Numerical Computation of Mixed Nash Equilibria

A systematic numeric procedure to find MNE for a bimatrix
game defined by two m× n matrices A = [aij ] and B = [bij ]
expressing the outcomes of players P1 and P2.

P1 selects a row of A/B and P2 selects a column of A/B.

MNE can be found by solving a quadratic program
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Numerical Computation of Mixed Nash Equilibria

Theorem 10.1. The pair of policies (y∗, z∗) ∈ Y ×Z is a MNE
with outcome (p∗, q∗) if and only if the tuple (y∗, z∗, p∗, q∗) is a
(global) solution to the following minimization:

minimize y′(A + B)z − p− q
subject to Az ≥̇ p1

B′y ≥̇ q1
y ≥̇ 0

1y = 1

}
(y ∈ Y)

z ≥̇ 0
1z = 1

}
(z ∈ Z)︸ ︷︷ ︸

optimization over m+n+2 parameters (y1,y2,...,ym,z1,z2,...,zn,p,q)

This minimization always has a global minima at zero.
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Numerical Computation of Mixed Nash Equilibria

For zero-sum games, A = −B and minimization is a linear
program that finds both policies in one shot

Observation: efficiency is reduced!

solving two small problems is better than solving a large
one.

Attention! Unless A = −B (a zero-sum game), the quadratic
criteria is indefinite because we can select z to be any vector for
which (A + B)z 6= 0 and then obtain

A positive value with

y = (A+B)z, p = q = 0 ⇒ y′(A+B)′(A+B)z − p− q = ||(A+B)z||2 > 0

and a negative value with

y = −(A+B)z, p = q = 0⇒ y′(A+B)′(A+B)z − p− q = −||(A+B)z||2 < 0

L.R. Garcia Carrillo TAMU-CC
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Numerical Computation of Mixed Nash Equilibria

Here, the quadratic criteria in the minimization is not convex:
numerical solvers can get caught in local minima.

Solution: verify that solver found a global minimum.

Easily done: we know that the global minimum is zero.

If solver gets caught in a local minimum

restart it at a different (typically random) initial point.
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Numerical Computation of Mixed Nash Equilibria

MATLAB R© Hint 3 (Quadratic programs).

MATLAB R©’s Optimization Toolbox command

[x,val] = quadprog(H,c,Ain,bin,Aeq,beq,low,high,x0)

numerically solves quadratic programs of the form

minimum 1
2x’Hx + c’x

subject to Ain x ≤̇ bin

Aeq x = beq

low ≤̇ x ≤̇ high

and returns the value val of the minimum and a vector x that
achieves the minimum.

To avoid the corresponding inequality constraints, the vector

low: can have some or all entries equal to -Inf

high: can have some or all entries equal to +Inf
L.R. Garcia Carrillo TAMU-CC
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Numerical Computation of Mixed Nash Equilibria

Vector x0: (optional) starting point for the optimization

important when H is indefinite since in this case the
minimization is not convex and may have local minima

MATLAB R© command optimset

used to set optimization options for quadprog

allows the selection of the optimization algorithm, which
for the computation of NE, must support non-convex
problems.

The following MATLAB R© code can be used to find a MNE to
the bimatrix game defined by A and B, starting from a random
initial condition x0.
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Numerical Computation of Mixed Nash Equilibria

[m,n] = size(A);

x0 = rand(n+m+2,1);

% y’( A + b )z - p - q

H = [zeros(m,m), A+B, zeros(m,2); A’+B’, zeros(n,n+2); zeros(2, m+n+2)];

c = [zeros(m+n,1); -1; -1];

% Az >= p & B’ y >= q

Ain = [zeros(m,m), -A, ones(m,1), zeros(m,1); -B’, zeros(n,n+1), ones(n,1)];

bin = zeros(m+n,1);

% sum(y) = sum(z)=1

Aeq = [ones(1,m), zeros(1,n+2); zeros(1,m), ones(1,n),0 ,0];

beq = [1;1];

% y i , z i in [0,1]

low = [zeros(n+m,1); -inf;-inf];

high = [ones(n+m,1);+inf;+inf];

% solve quadratic program

options = optimset(’TolFun’,1e-8,’TolX’,1e-8,’TolPCG’,1e-8,’Algorithm’,’active-set’);

[x,val,exitflag ] = quadprog(H,c,Ain,bin,Aeq,beq,low,high,x0,options)

y = x(1:m)

z = x(m+1:m+n)

p = x(m+n+1)

q = x(m+n+2)

L.R. Garcia Carrillo TAMU-CC
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Numerical Computation of Mixed Nash Equilibria

Proof of Theorem 10.1. Justify two statements separately:
1 a MNE is always a global minimum
2 any global minimum is a MNE

For 1, assume (y∗, z∗) is a MNE with outcome (p∗, q∗) and show
that (y∗, z∗, p∗, q∗) is a global minimum. We need to show:

1. Point (y∗, z∗, p∗, q∗) satisfies all the constraints in the
minimization. Indeed, since

p∗ = y∗′Az∗ ≤ y′Az∗, ∀y ∈ Y

in particular for every integer i ∈ {1, 2, . . . ,m} if we pick

y = [0 · · · 0 1 0 · · · 0]′︸ ︷︷ ︸
1 at the ith position

L.R. Garcia Carrillo TAMU-CC
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Numerical Computation of Mixed Nash Equilibria

we conclude that

p∗ ≤ (Az∗)i︸ ︷︷ ︸
ith entry of Az∗

and therefore p∗1≤̇Az∗. On the other hand, since

q∗ = y∗′Bz∗ ≤ y∗′Bz, ∀z ∈ Z

we also conclude that q∗1′≤̇y∗B. This entry-wise inequality
between row vectors can be converted into an entry-wise
inequality between column vectors by transposition: q∗1≤̇B′y∗.

Remaining constraints on y∗ and z∗ hold since y ∈ Y and z ∈ Z.

L.R. Garcia Carrillo TAMU-CC
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Numerical Computation of Mixed Nash Equilibria

2. (y∗, z∗, p∗, q∗) achieves the global minimum, which is zero.
Note that since p∗ = y∗′Az∗ and q∗ = y∗′Bz∗ we have

y∗′(A + B)z∗ − p∗ − q∗ = 0

It remains to show that no other vectors y and z that satisfy the
constraints can lead to a value for the criteria lower than zero:{

Az ≥ p1
B′y ≥ q1

⇒
{

y′Az ≥ p
z′B′y ≥ q

⇒ y′(A + B)z − p− q ≥ 0

To prove the converse statement assume (y∗, z∗, p∗, q∗) is a
global minimum, and show that (y∗, z∗) must be a MNE with
outcome (p∗, q∗).

From Theorem 9.1: there is at least one MNE and we have
seen above that this leads to a global minimum equal to zero.
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Numerical Computation of Mixed Nash Equilibria

Therefore any global minimum (y∗, z∗, p∗, q∗) must satisfy:

y∗′(A + B)z∗ − p∗ − q∗ = 0 Az∗≥̇p∗1, z∗ ∈ Z
B′y∗≥̇q∗1, y∗ ∈ Y

From RHS eqs., we conclude that

y′Az∗ ≥ p∗, ∀y ∈ Y z′B′y∗ ≥ q∗, ∀z ∈ Z
The proof is completed as soon as we show that

y∗Az∗ = p∗, z∗′B′y∗ = q∗

To achieve this, set y = y∗ and z = z∗, which leads to

y′Az∗ − p∗ ≥ 0, z∗′B′y∗ − q∗ ≥ 0

However, because of LHS eq., the two numbers in the LHS of
these ineq. must add up to zero, so they must be equal to zero.
y∗Az∗ = p∗ and z∗′B′y∗ = q∗ hold, and this completes the proof.

L.R. Garcia Carrillo TAMU-CC
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Practice Exercises
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Practice Exercises

10.1. Use MATLAB R© to compute NE policies for

1. battle of the sexes with

A =

[
−2 0

3 −1

]
︸ ︷︷ ︸
P2 choices

}
P1 choices B =

[
−1 3

0 −2

]
︸ ︷︷ ︸
P2 choices

}
P1 choices

2. prisoners’ dilemma with

A =

[
2 30
0 8

]
︸ ︷︷ ︸
P2 choices

}
P1 choices B =

[
2 0

30 8

]
︸ ︷︷ ︸
P2 choices

}
P1 choices

Solution to Exercise 10.1. The following MATLAB R© code
can be used to solve both problems.
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Practice Exercises

[m,n] = size(A);

x0 = rand(n+m+2,1);

% y’( A + b )z -p - q

H = [zeros(m,m), A+B, zeros(m,2); A’+B’, zeros(n,n+2); zeros(2, m+n+2)];

c = [zeros(m+n,1); -1; -1];

% Az >= p & B’y >= q

Ain = [zeros(m,m), -A, ones(m,1), zeros(m,1); -B’, zeros(n,n+1), ones(n,1)];

bin = zeros(m+n,1);

% sum(y) = sum(z)=1

Aeq = [ones(1,m), zeros(1,n+2); zeros(1,m), ones(1,n),0 ,0];

beq = [1;1];

% y i , z i in [0,1]

low = [zeros(n+m,1); -inf; -inf];

high = [ones(n+m,1);+inf; +inf];

% solve quadratic program

options = optimset(’TolFun’,1e-8,’TolX’,1e-8,’TolPCG’,1e-8,’Algorithm’,’active-set’);

[x,val,exitflag ] = quadprog(H,c,Ain,bin,Aeq,beq,low,high,x0,options)

y = x(1:m)

z = x(m+1:m+n)

p = x(m+n+1)

q = x(m+n+2)
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Practice Exercises

1. For the BoS game, the code should be preceded by
A = [-2,0; 3,-1]; B = [-1,3; 0,-2];

and we obtain the following global minimum

y = 0.3333 p = -0.3333

0.6667

z = 0.1667 q = -0.3333

0.8333

2. For the prisoners’ dilemma, the code should be preceded by
A =[2,30; 0,8]; B =[2,0; 30 ,8];

and we obtain the following global minimum

y = 0.0000 p = 8.0000

1.0000

z = 0.0000 q = 8.0000

1.0000

15% of the time did we get a global minima.
The remaining 85% of the cases, we obtained local minima.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 10 - Computation of Nash Equilibria for Bimatrix Games



Completely Mixed Nash Equilibria Computation of Completely Mixed NE Numerical Computation of MNE Practice Exercises

End of Lecture

10 - Computation of Nash Equilibria for Bimatrix
Games

Questions?
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