N-Player Games Pure N-Player Games in Normal Form Mixed Policies for N-Player Games in Normal Form 00000 000

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 11 - N-Player Games

Luis Rodolfo Garcia Carrillo

School of Engineering and Computing Sciences Texas A&M University - Corpus Christi, USA

L.R. Garcia Carrillo

TAMU-CC

N-Player Games Pure N-Player Games in Normal Form Mixed Policies for N-Player Games in Normal Form 00000 000

Table of contents

- 2 Pure N-Player Games in Normal Form
- Mixed Policies for N-Player Games in Normal Form
- 4 Completely Mixed Policies

L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 11 - N-Player Games

N-Player Games Pure N-Player Games in Normal Form Mixed Policies for N-Player Games in Normal Form 0000 000

N-Player Games

L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 11 - N-Player Games TAMU-CC

N-Player Games Pure N-Player Games in Normal Form Mixed Policies for N-Player Games in Normal Form 0000 0000

N-Player Games

Games with N-players P_1, P_2, \ldots, P_N , allowed to select policies within action spaces $\Gamma_1, \Gamma_2, \ldots, \Gamma_N$. When

 $\begin{cases} P_1 \text{ uses policy } \gamma_1 \in \Gamma_1 \\ P_2 \text{ uses policy } \gamma_2 \in \Gamma_2 \\ \vdots \\ P_N \text{ uses policy } \gamma_N \in \Gamma_N \end{cases}$

the **outcome of the game** for player P_i is denoted by

 $J_i(\gamma_1, \gamma_2, \ldots, \gamma_N)$

Each P_i wants to **minimize** their own outcome, and does not care about the outcome of the other players.

L.R. Garcia Carrillo

N-Player Games

To avoid writing all the policies, separate the dependence of J_i on γ_i and on the remaining policies γ_{-i} and write

$$J_i(\gamma_i, \gamma_{-i})$$

with the abbreviation to denote a list of all but the ith policy

$$\gamma_{-i} \equiv (\gamma_1, \gamma_2, \dots, \gamma_{i-1}, \gamma_{i+1}, \dots, \gamma_N)$$

Terminology also applies to action spaces, as in

$$\gamma_{-i} \in \Gamma_{-i}$$

which is meant to be a short-hand notation for

$$\gamma_1 \in \Gamma_1, \gamma_2 \in \Gamma_2, \dots, \gamma_{i-1} \in \Gamma_{i-1}, \gamma_{i+1} \in \Gamma_{i+1}, \dots, \gamma_N \in \Gamma_N$$

L.R. Garcia Carrillo

Security Levels and Policies

Security policies for N-player games:

Finding the policy that guarantees the least possible cost, assuming the worse possible choice by the other players.

Definition 11.1 (Security policy).

Security level for $P_i, i \in \{1, 2, ..., N\}$ is defined by

 $\overline{V}(J_i) := \underbrace{\inf_{\substack{\gamma_i \in \Gamma_i \\ \text{minimize cost assuming} \\ \text{worst choice by } P_i}}_{\text{minimize cost assuming}} \underbrace{\sup_{\substack{\gamma_{-i} \in \Gamma_{-i} \\ \text{worst choice by all} \\ \text{other players } P_{-i} \\ \text{from } P_i\text{'s perspective}} I_i(\gamma_i, \gamma_{-i})$

L.R. Garcia Carrillo

TAMU-CC

Security Levels and Policies

Security policy for P_i

Any policy $\gamma_i^* \in \Gamma_i$ for which the infimum is achieved, i.e.,

$$\bar{V}(J_i) := \inf_{\gamma_i \in \Gamma_i} \sup_{\gamma_{-i} \in \Gamma_{-i}} J_i(\gamma_i, \gamma_{-i}) = \underbrace{\sup_{\substack{\gamma_{-i} \in \Gamma_{-i} \\ \gamma_i^* \text{ achieves the infimum}}} J_i(\gamma_i^*, \gamma_{-i}^*)$$

Security policies may not exist because the infimum may not be achieved by a policy in Γ_i .

An *N*-tuple of policies $(\gamma_1^*, \gamma_2^*, \dots, \gamma_N^*)$ is said to be **minimax** if each γ_i is a security policy for P_i .

Nash Equilibria

Definition 11.2 (Nash equilibrium). An N-tuple of policies

$$\gamma^* := (\gamma_1^*, \gamma_2^*, \dots, \gamma_N^*) \in \Gamma_1 \times \Gamma_2 \times \dots \times \Gamma_N$$

is a NE if

$$J_i(\gamma^*) = J_i(\gamma_i^*, \gamma_{-i}^*) \le J_i(\gamma_i, \gamma_{-i}^*), \quad \forall \gamma_i \in \Gamma_i, \quad i \in \{1, 2, \dots, N\}$$

and the *N*-tuple $(J_1(\gamma^*), J_2(\gamma^*), \ldots, J_N(\gamma^*))$ is called the **Nash** outcome of the game.

The NE is **admissible** if there is no **better** NE in the sense that there is no other

$$\bar{\gamma}^* := (\bar{\gamma}_1^*, \bar{\gamma}_2^*, \dots, \bar{\gamma}_N^*) \in \Gamma_1 \times \Gamma_2 \times \dots \times \Gamma_N$$
 such that

$$J_i(\bar{\gamma}^*) \leq J_i(\gamma^*), \quad \forall i \in \{1, 2, \dots, N\}$$

with a strict inequality for at least one player.

L.R. Garcia Carrillo

N-Player Games	Pure N-Player Games in Normal Form	Mixed Policies for N-Player Games in Normal Form
	000	

Pure N-Player Games in Normal Form

L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 11 - N-Player Games TAMU-CC

N-Player Games Pure N-Player Games in Normal Form Mixed Policies for N-Player Games in Normal Form 000

Pure N-Player Games in Normal Form

Played by N players P_1, P_2, \ldots, P_N , each selecting policies from finite action spaces:

 P_i has available m_i actions: $\Gamma_i := \{1, 2, \ldots, m_i\}$

Outcomes for P_i 's are quantified by N tensors A^1, A^2, \ldots, A^N , each N-dimensional with dimensions m_1, m_2, \ldots, m_N . When

 $\begin{cases} P_1 \text{ selects action } k_1 \in \Gamma_1 := \{1, 2, \dots, m_1\} \\ P_2 \text{ selects action } k_2 \in \Gamma_2 := \{1, 2, \dots, m_2\} \\ \vdots \\ P_N \text{ selects action } k_N \in \Gamma_N := \{1, 2, \dots, m_N\} \end{cases}$

the **outcome** for P_i is obtained from the appropriate entry $a_{k_1k_2...k_N}^i$ of the tensor A^i

• all players want to **minimize** their respective outcomes.

L.R. Garcia Carrillo

N-Player Games **Pure N-Player Games in Normal Form** Mixed Policies for N-Player Games in Normal Form 0000 000

Pure N-Player Games in Normal Form

Testing if a particular N-tuple of pure policies $(k_1^*, k_2^*, \ldots, k_N^*)$ is a NE is straightforward. Just check if

$$a_{k_i^*k_{-i}^*}^i \le a_{k_ik_{-i}^*}^i, \qquad \forall k_i \in \{1, 2, \dots, m_i\}, \quad \forall i \in \{1, 2, \dots, N\}$$

Finding a NE in pure policies is computationally difficult

 $\bullet\,$ need to check all possible N-tuples, which are as many as

$$m_1 \times m_2 \times \cdots \times m_N$$

Tensor: a multi-dimensional array that generalizes the concept of matrix for dimensions higher than two.

L.R. Garcia Carrillo

TAMU-CC

N-Player Games Pure N-Player Games in Normal Form Mixed Policies for N-Player Games in Normal Form

Mixed Policies for N-Player Games in Normal Form

L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 11 - N-Player Games TAMU-CC

Mixed Policies for N-Player Games in Normal Form

A mixed policy for player P_i is a set of numbers

$$y^{i} := (y_{1}^{i}, y_{2}^{i}, \dots, y_{m_{i}}^{i}), \qquad \sum_{k=1}^{m_{i}} y_{k}^{i} = 1 \qquad y_{k}^{i} \ge 0, \quad \forall k \in \{1, 2, \dots, m_{i}\}$$

 y_k^i : probability that P_i uses to select action $k \in \{1, 2, \dots, m_i\}$.

Each mixed policy y_i is an element of the action space \mathcal{Y}^i , consisting of probability distributions over m_i actions.

Random selections by P_i 's are statistically independently

• each P_i tries to minimize their own expected outcome:

$$J_i = \sum_{k_1=1}^{m_1} \sum_{k_2=1}^{m_2} \cdots \sum_{k_N=1}^{m_N} \underbrace{y_{k_1}^1 y_{k_2}^2 \cdots y_{k_N}^N}_{\text{probability that } P_1 \text{ selects } k_1} \underset{\text{and } P_2 \text{ selects } k_2 \text{ and } \dots}{\underbrace{y_{k_1}^1 y_{k_2}^2 \cdots y_{k_N}^N}} \underbrace{a_{k_1 k_2 \cdots k_N}}_{\text{outcome when } P_1 \text{ selects } k_2 \text{ and } P_2 \text{ selects } k_2 \text{ and } \dots}$$

TAMU-CC

L.R. Garcia Carrillo

Mixed Policies for N-Player Games in Normal Form

Definition 11.3 (Mixed Nash equilibrium).

An *N*-tuple of policies $(y^{1*}, y^{2*}, \dots, y^{N*}) \in \mathcal{Y}^1 \times \mathcal{Y}^2 \times \dots \times \mathcal{Y}^N$ is a **mixed Nash equilibrium** (MNE) if

$$\sum_{k_{1}} \sum_{k_{2}} \cdots \sum_{k_{N}} \overline{y_{k_{1}}^{1*}} y_{k_{2}}^{2*} \cdots y_{k_{N}}^{N*} a_{k_{1}k_{2}\cdots k_{N}}^{1} \leq \sum_{k_{1}} \sum_{k_{2}} \cdots \sum_{k_{N}} \overline{y_{k_{1}}^{1}} y_{k_{2}}^{2*} \cdots y_{k_{N}}^{N*} a_{k_{1}k_{2}\cdots k_{N}}^{1}$$
$$\sum_{k_{1}} \sum_{k_{2}} \cdots \sum_{k_{N}} y_{k_{1}}^{1*} \overline{y_{k_{2}}^{2*}} \cdots y_{k_{N}}^{N*} a_{k_{1}k_{2}\cdots k_{N}}^{1} \leq \sum_{k_{1}} \sum_{k_{2}} \cdots \sum_{k_{N}} y_{k_{1}}^{1*} \overline{y_{k_{2}}^{2}} y_{k_{3}}^{3*} \cdots y_{k_{N}}^{N*} a_{k_{1}k_{2}\cdots k_{N}}^{2}$$
$$\cdots$$

or equivalently in a more compressed form

$$\sum_{\substack{k_1k_2\cdots k_N}} \overline{y_{k_i}^{i*}} \left(\prod_{j\neq i} y_{k_j}^{j*}\right) a_{k_1k_2\cdots k_N}^i \leq \sum_{\substack{k_1k_2\cdots k_N}} \overline{y_{k_i}^{i}} \left(\prod_{j\neq i} y_{k_j}^{j*}\right) a_{k_1k_2\cdots k_N}^i,$$

$$\forall i \in \{1, 2, \dots, N\}$$

L.R. Garcia Carrillo

TAMU-CC

Mixed Policies for N-Player Games in Normal Form

(As in bimatrix games) The introduction of mixed policies enlarges the action spaces for both players to the point that NE now always exist.

Theorem 11.1 (Nash).

Every N-player game in normal form has at least one mixed Nash Equilibrium.

N-Player Games Pure N-Player Games in Normal Form Mixed Policies for N-Player Games in Normal Form 00000 000 000

Completely Mixed Policies

L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 11 - N-Player Games TAMU-CC

Computing NE for N-player games in normal form is not easy

• simpler for games that admit completely mixed equilibria

Definition 11.4 (completely mixed Nash equilibria (MNE)) A MNE $(y^{1*}, y^{2*}, \dots, y^{N*})$ is **completely mixed** or an

A MINE $(y^{1}, y^{2}, ..., y^{n})$ is completely mixed or an inner-point equilibrium if all probabilities are strictly positive, i.e.,

$$y^{1*} \dot{>} 0, \quad y^{2*} \dot{>} 0, \cdots, y^{N*} \dot{>} 0,$$

All completely MNE can be found by solving an algebraic multi-linear system of equations.

Lemma 11.1 (completely mixed Nash equilibria). If $(y^{1*}, y^{2*}, \dots, y^{N*})$ is a completely MNE with outcomes $(p^{1*}, p^{2*}, \dots, p^{N*})$ then $\sum_{k_{-i}} \left(\prod_{j \neq i} y_{k_j}^{j*}\right) a_{k_1 k_2 \cdots k_N}^i = p^{i*}, \qquad \forall i \in \{1, 2, \dots, N\}$

Conversely, any solution $(y^{1*}, \ldots, y^{N*}), (p^{1*}, \ldots, p^{N*})$ for which

$$\sum_{k_i=1}^{m_i} y_{k_i}^{i*} = 1, \qquad y^{i*} \ge 0, \quad \forall i \in \{1, 2, \dots, N\}$$

corresponds to a MNE $(y^{1*}, y^{2*}, \ldots, y^{N*})$ with outcomes $(p^{1*}, p^{2*}, \ldots, p^{N*})$ for the original game, and for any similar game in which some/all players want to maximize instead of minimize their outcomes.

L.R. Garcia Carrillo

Proof of Lemma 11.1.

Assuming $(y^{1*}, y^{2*}, \dots, y^{N*})$ is a completely MNE, we have $\sum_{k_1k_2\cdots k_N} y_{k_i}^{i*} \left(\prod_{j\neq i} y_{k_j}^{j*}\right) a_{k_1k_2\cdots k_N}^i = \min_{y^i} \sum_{k_1k_2\cdots k_N} y_{k_i}^i \left(\prod_{j\neq i} y_{k_j}^{j*}\right) a_{k_1k_2\cdots k_N}^i$ $= \min_{y^i} \sum_{k_i} y_{k_i}^i \sum_{k_{-i}} \left(\prod_{j\neq i} y_{k_j}^{j*}\right) a_{k_1k_2\cdots k_N}^i$

If one of the $\sum_{k_{-i}} \left(\prod_{j \neq i} y_{k_j}^{j*}\right) a_{k_1 k_2 \cdots k_N}^i$ was strictly larger than any of the remaining ones, then the minimum would be achieved with $y_i = 0$ and the NE would not be completely mixed. Therefore to have a completely MNE, we must have $\sum_{k_{-i}} \left(\prod_{j \neq i} y_{k_j}^{j*}\right) a_{k_1 k_2 \cdots k_N}^i = p^{i*}$ L.R. Garcia Carrillo

N-Player Games	Pure N-Player Games in Normal Form	Mixed Policies for N-Player Games in Normal Form

Conversely, if $(y^{1*}, y^{2*}, \ldots, y^{N*})$ and $(p^{1*}, p^{2*}, \ldots, p^{N*})$ satisfy the two conditions in **Lemma 11.1**, , then

$$\sum_{k_1k_2\cdots k_N} y_{k_i}^{i*} \left(\prod_{j\neq i} y_{k_j}^{j*}\right) a_{k_1k_2\cdots k_N}^i = \sum_{k_1k_2\cdots k_N} y_{k_i}^i \left(\prod_{j\neq i} y_{k_j}^{j*}\right) a_{k_1k_2\cdots k_N}^i$$
$$= \min_{y^i} \sum_{k_i} y_{k_i}^i p^{i*} = p^{i*}, \quad \forall y^i \in \mathcal{Y}^i$$

which shows that $(y^{1*}, y^{2*}, ..., y^{N*})$ is a MNE with outcome $(p^{1*}, p^{2*}, ..., p^{N*})$.

In fact, $(y^{1*}, y^{2*}, \ldots, y^{N*})$ is also a MNE for a different game in which some/all P_i 's want to maximize instead of minimize the outcome.

L.R. Garcia Carrillo

TAMU-CC

End of Lecture

11 - N-Player Games

Questions?

L.R. Garcia Carrillo COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 11 - N-Player Games

