COSC-6590/GSCS-6390

Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

Luis Rodolfo Garcia Carrillo

School of Engineering and Computing Sciences Texas A&M University - Corpus Christi, USA

L.R. Garcia Carrillo

TAMU-CC

Table of contents

- 1 One-Player Discrete-Time Games
- 2 Discrete-Time Cost-To-Go
- 3 Discrete-Time Dynamic Programming
- 4 Computational Complexity
- **5** Solving Finite One-Player Games with MATLAB
- 6 Linear Quadratic Dynamic Games
- Practice Exercise

L.R. Garcia Carrillo

TAMU-CC

One-Player Discrete-Time Games

L.R. Garcia Carrillo

TAMU-CC

One-Player Discrete-Time Games

Solution methods for one-player (discrete-time) dynamic games, which are simple optimizations

This corresponds to dynamics of the form

starting at some initial state x_1 in the state space \mathcal{X} .

At each time k, the action u_k is required to belong to a given action space \mathcal{U}_k .

TAMU-CC

One-Player Discrete-Time Games

Assume finite horizon $(K < \infty)$ stage-additive costs of the form

$$J := \sum_{k=1}^{K} g_k(x_k, u_k)$$

that the (only) player wants to minimize using either:

Open-Loop (OL) policy

$$u_k = \gamma_k^{\text{OL}}(x_1), \qquad \forall k \in \{1, 2, \dots, K\}$$

State-Feedback (FB) policy

$$u_k = \gamma_k^{\text{FB}}(x_k), \qquad \forall k \in \{1, 2, \dots, K\}$$

L.R. Garcia Carrillo

TAMU-CC

L.R. Garcia Carrillo

TAMU-CC

Suppose the player is at some state x at stage ℓ

- x would perhaps **not** be the **optimal** place to be at ℓ
- still, the player wants to **estimate the cost**, if playing optimally from this point on, so as **to minimize costs** incurred in remaining stages.

Cost-to-Go from state $x \in \mathcal{X}$ at time $\ell \in \{1, 2, \dots, K\}$

$$V_{\ell}(x) := \inf_{u_{\ell} \in \mathcal{U}_{\ell}, u_{\ell+1} \in \mathcal{U}_{\ell+1}, \dots, u_k \in \mathcal{U}_K} \sum_{k=\ell}^K g_k(x_k, u_k), \quad \forall x \in \mathcal{X}$$

with the sequence $\{x_k \in \mathcal{X} : k = \ell, \ell + 1, \dots, K\}$ starting at $x_\ell = x$ and satisfying the dynamics

$$x_{k+1} = f_k(x_k, u_k) \qquad \forall k \in \{\ell, \ell+1, \dots, K-1\}$$

L.R. Garcia Carrillo

TAMU-CC

Note: The cost-to-go is a function of x and ℓ . Often called the value function of the game/optimization.

Computing the cost-to-go $V_1(x_1)$ from the initial state x_1 at the first stage $\ell = 1$ essentially amounts to minimizing the cost

$$J := \sum_{k=1}^{K} g_k(x_k, u_k)$$

for the dynamics

This leads to two important conclusions.

L.R. Garcia Carrillo TAMU-CC COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

Conclusion 1. Regardless of the information structure considered (OL, FB, other), it is not possible to obtain a cost

$$J := \sum_{k=1}^{K} g_k(x_k, u_k)$$

lower than $V_1(x_1)$.

This is because in the minimization

$$V_{\ell}(x) := \inf_{u_{\ell} \in \mathcal{U}_{\ell}, u_{\ell+1} \in \mathcal{U}_{\ell+1}, \dots, u_k \in \mathcal{U}_K} \sum_{k=\ell}^K g_k(x_k, u_k), \quad \forall x \in \mathcal{X}$$

we place no constraints on what information may or may not be available to compute the optimal u_k .

• $V_1(x_1)$: lower bound on the smallest value achieved for J.

Conclusion 2. If the infimum in the minimization

$$V_{\ell}(x) := \inf_{u_{\ell} \in \mathcal{U}_{\ell}, u_{\ell+1} \in \mathcal{U}_{\ell+1}, \dots, u_k \in \mathcal{U}_K} \sum_{k=\ell}^K g_k(x_k, u_k), \quad \forall x \in \mathcal{X}$$

is achieved for a specific sequence

$$u_1^* \in \mathcal{U}_1, u_2^* \in \mathcal{U}_2, \dots, u_K \in \mathcal{U}_K$$

computed before the game starts just with knowledge of x_1 , then this sequence of actions provides an **optimal OL policy**

$$\gamma_1^{\mathrm{OL}}(x_1) := u_1^*, \ \gamma_2^{\mathrm{OL}}(x_1) := u_2^*, \dots, \ \gamma_K^{\mathrm{OL}}(x_1) := u_K^*,$$

Here, $V_1(x_1)$ is the smallest value that can be achieved for J. This would not be the case, e.g., if there were stochastic events

Discrete-Time Dynamic Programming

L.R. Garcia Carrillo

TAMU-CC

DP is a computationally efficient recursive technique

• useful to compute the cost-to-go

For the last stage K, the cost-to-go $V_K(x)$ is the minimum of

 $g_K(x_K, u_K)$

over the possible actions u_K , for a game that starts with $x_K = x$, and therefore

$$V_K(x) = \inf_{u_K \in \mathcal{U}_K} g_K(x, u_K), \qquad \forall x \in \mathcal{X}$$

Note: When $g_K(\cdot)$ is continuously differentiable, the optimization can be done using calculus by solving

$$\frac{dg_K(x_K, u_K)}{du_K} = 0$$

L.R. Garcia Carrillo

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

TAMU-CC

For each state x, we compute $V_K(x)$ by solving a single parameter optimization over the set \mathcal{U}_K .

For the previous stages $\ell < K$, we have that

$$V_{\ell}(x) := \inf_{\substack{u_{\ell} \in \mathcal{U}_{\ell}, \dots, u_{K} \in \mathcal{U}_{K} \\ u_{\ell} \in \mathcal{U}_{\ell}, \dots, u_{K} \in \mathcal{U}_{K}}} \sum_{k=\ell}^{K} g_{k}(x_{k}, u_{k})} = \inf_{\substack{u_{\ell} \in \mathcal{U}_{\ell}, \dots, u_{K} \in \mathcal{U}_{K} \\ u_{\ell+1}, \dots, u_{K}}}} \left(\underbrace{g_{\ell}(x, u_{\ell})}_{\substack{\text{independent of} \\ u_{\ell+1} \in \mathcal{U}_{\ell+1}, \dots, u_{K}}} + \underbrace{\sum_{k=\ell+1}^{K} g_{k}(x_{k}, u_{k})}_{\substack{\text{dependent on all} \\ u_{\ell}, \dots, u_{K}}}} \right)$$
$$= \inf_{u_{\ell} \in \mathcal{U}_{\ell}} \left(g_{\ell}(x, u_{\ell}) + \inf_{u_{\ell+1} \in \mathcal{U}_{\ell+1}, \dots, u_{K} \in \mathcal{U}_{K}} \sum_{k=\ell+1}^{K} g_{k}(x_{k}, u_{k}) \right)$$

L.R. Garcia Carrillo

TAMU-CC

Where we used these facts:

- first equality: we must set $x_{\ell} = x$ to compute $V_{\ell}(x)$
- second equality: $g_{\ell}(x, u_{\ell})$ does not depend on $u_{\ell+1}, \ldots, u_K$

However

$$\inf_{u_{\ell+1}\in\mathcal{U}_{\ell+1},\ldots,u_K\in\mathcal{U}_K}\sum_{k=\ell+1}^K g_k(x_k,u_k)$$

is the minimum cost for a game starting at stage $\ell+1$ with state

$$x_{\ell+1} = f_\ell(x, u_\ell)$$

which is precisely the cost-to-go $V_{\ell+1}(f_{\ell}(x, u_{\ell}))$.

L.R. Garcia Carrillo

TAMU-CC

We therefore conclude

$$V_{\ell}(x) = \inf_{u_{\ell} \in \mathcal{U}_{\ell}} \left(g_{\ell}(x, u_{\ell}) + V_{\ell+1}(f_{\ell}(x, u_{\ell})) \right), \quad \forall x \in \mathcal{X}, \quad \ell \in \{1, 2, \dots, K-1\}$$

Note: If we know the function $V_{\ell+1}(\cdot)$, we can compute each $V_{\ell}(x)$ by solving a single-parameter optimization over set \mathcal{U}_{ℓ} . This optimization produces the optimal action u_{ℓ}^* to be used when the state is at x_{ℓ} .

It is convenient to define $V_{K+1}(x) = 0, \quad \forall x \in \mathcal{X}$

Allowing us to re-write $V_K(x)$ and $V_\ell(x)$ using

$$V_{\ell}(x) = \inf_{u_{\ell} \in \mathcal{U}_{\ell}} \left(g_{\ell}(x, u_{\ell}) + V_{\ell+1}(f_{\ell}(x, u_{\ell})) \right), \quad \forall x \in \mathcal{X}$$

now valid $\forall \ell \in \{1, 2, \dots, K\}$

L.R. Garcia Carrillo

TAMU-CC

For the case of $\ell = 1$ and $x = x_1$ and when the infima in $V_{\ell}(x)$ are actually minima, the points at which these infima are achieved can be used to construct an open-loop policy.

Specifically, we can obtain:

- u_1^* from $V_\ell(x)$ with $\ell = 1$ and $x = x_1$,
 - leading to $x_2^* = f_1(x_1, u_1^*);$
- u_2^* from $V_\ell(x)$ with $\ell = 2$ and $x = x_2^*$,
 - leading to $x_3^* = f_2(x_2^*, u_2^*);$

$$u_3^*$$
 from $V_\ell(x)$ with $\ell = 3$ and $x = x_3^*$,

• leading to
$$x_4^* = f_3(x_3^*, u_3^*);$$

etc. . .

L.R. Garcia Carrillo

TAMU-CC

Open-Loop Optimization

Procedure to compute the **OL policy** γ^{OL} that minimizes

$$J := \sum_{k=1}^{K} g_k(x_k, u_k)$$
for the dynamics
$$\underbrace{x_{k+1}}_{\substack{\text{entry node at \\ \text{stage } k+1}} = \underbrace{f_k}_{\substack{\text{"dynamics"} \\ \text{at stage } k}} \left(\underbrace{x_k}_{\substack{\text{state at } \\ \text{stage } k}}, \underbrace{u_k}_{\substack{P_1 \text{'s action} \\ \text{at stage } k}} \right) \quad \forall k \in \{1, 2, \dots, K\}$$

Step 1: Compute the cost-to-go using **backward iteration** starting from $\ell = K$, proceeding backward in time until $\ell = 1$

$$V_{K+1}(x) = 0, \quad V_{\ell}(x) = \inf_{u_{\ell} \in \mathcal{U}_{\ell}} \left(g_{\ell}(x, u_{\ell}) + V_{\ell+1}(f_{\ell}(x, u_{\ell})) \right), \quad \forall x \in \mathcal{X}$$

Note: To do the backwards iteration, compute each $V_{\ell}(x)$ for every possible value of the state x at stage ℓ .

L.R. Garcia Carrillo

TAMU-CC

Open-Loop Optimization

Step 2: Compute the sequence of actions

$$u_1^* \in \mathcal{U}_1, u_2^* \in \mathcal{U}_2, \dots, u_k^* \in \mathcal{U}_K$$

that minimize $V_1(x_1)$ using a **forward iteration**, starting from k = 1 and proceeding forward in time until k = K:

$$x_{1}^{*} = x_{1}, u_{k}^{*} = \underset{u_{k} \in \mathcal{U}_{K}}{\operatorname{arg\,min}} \underbrace{\left(g_{k}(x_{k}^{*}, u_{k}) + V_{k+1}(f_{k}(x_{k}^{*}, u_{k}))\right)}_{\operatorname{computed using the precomputed states } x_{k}^{*}}, x_{k+1}^{*} = f_{k}(x_{k}^{*}, u_{k}^{*})$$

Assumption: infimum of $g_{\ell}(x_{\ell}^*, u_{\ell}) + V_{\ell+1}(f_{\ell}(x_{\ell}^*, u_{\ell}))$ is achieved at some point $u_k \in \mathcal{U}_K$.

• if this is not the case, then this procedure fails. When the infimum is achieved at multiple points, any one can be used in the equation.

L.R. Garcia Carrillo

TAMU-CC

Open-Loop Optimization

Step 3: Finally, the optimal OL policy γ^{OL} is given by

$$\gamma_1^{\text{OL}}(x_1) := u_1^*, \ \ \gamma_2^{\text{OL}}(x_1) := u_2^*, \ \ \dots, \ \ \gamma_K^{\text{OL}}(x_1) := u_K^*,$$

Observation: All the x_k^* and u_k^* in **Step 2** are precomputed and depend solely on the initial state x_1 .

Thus, γ^{OL} is indeed an OL policy.

L.R. Garcia Carrillo

TAMU-CC

Suppose we use the optimal OL policy γ^{OL} defined in **Step 3**, which selects the actions

$$u_k = \gamma_k^{\text{OL}}(x_1) := u_k^*, \quad \forall k \in \{1, 2, \dots, K\}$$

In this case, the precomputed states x_k^* defined in **Step 2** match precisely the states x_k that would be measured during the game.

Therefore, we would get the same minimum value $V_1(x_1)$ for the cost J, if we were using a state-FB policy γ^{FB} defined by

$$\gamma_k^{\text{FB}}(x_k) := \underset{u_k \in \mathcal{U}_K}{\operatorname{arg\,min}} \underbrace{\left(g_k(x_k, u_k) + V_{k+1}(f_k(x_k, u_k))\right)}, \quad \forall k \in \{1, 2, \dots, K\}$$

computed using the measured state x_K

L.R. Garcia Carrillo

TAMU-CC

When all the $g_k(x_k, u_k) + V_{k+1}(f_k(x_k, u_k))$ have a minimum for some $u_k \in \mathcal{U}_K$, this state-FB policy γ^{FB} can do as well as the optimal OL policy γ^{OL} .

Since it is not possible to obtain a value for the cost J lower than $V_1(x_1)$, we conclude that $\gamma_k^{\text{FB}}(x_k)$ is an optimal FB policy.

Notation 5 (Time-consistent policy).

A state-FB policy $\gamma_k^{\text{FB}}(x_k)$ that minimizes the cost-to-go from current state x_k at time k is said to be **time consistent**.

There may be policies $\bar{\gamma}^{\text{FB}}$ that still achieve a cost as low as $V_1(x_1)$, but are not time consistent because $\bar{\gamma}_k^{\text{FB}}(x_k)$ may not achieve the minimum in $\gamma_k^{\text{FB}}(x_k)$ for every state x_k .

L.R. Garcia Carrillo

Why? it is irrelevant for a policy to achieve the minimum in $\gamma_k^{\text{FB}}(x_k)$ for states x_k never reached through an optimal path.

Time-consistent policies are robust

If due to an unexpected event the state at some time k is taken to a point other than

$$x_{k+1} \neq f_k(x_k, u_k)$$

then a time-consistent policy is still optimal in minimizing the cost-to-go from the stage k + 1 forward.

OL policies are not robust because they rely on precomputed states and cannot react to unexpected events.

L.R. Garcia Carrillo

TAMU-CC

Theorem 15.1. Consider the sequence of functions $V_1(x), V_2(x), \ldots, V_{K+1}(x)$ uniquely defined by

$$V_k(x) = \begin{cases} 0 & k = K+1\\ \inf_{u_k \in \mathcal{U}_k} \left(g_k(x, u_k) + V_{k+1}(f_k(x, u_\ell)) \right) & k \in \{1, 2, \dots, K\}, \end{cases}$$

 $\forall x \in \mathcal{X}$. Then $V_k(x)$ is equal to the cost-to-go, and if the infimum is always achieved at some point in \mathcal{U}_k , we have that:

1. For any initial state x_1 , an optimal OL policy γ^{OL} is

$$\gamma^{\text{OL}}(x_1) := u_k^*, \ \forall k \in \{1, 2, \dots, K\},$$

with u_k^* obtained from solving

$$x_1^* = x_1, u_k^* = \underset{u_k \in \mathcal{U}_K}{\operatorname{arg\,min}} \quad \underbrace{\left(g_k(x_k^*, u_k) + V_{k+1}(f_k(x_k^*, u_k))\right)}_{\bullet} \quad , x_{k+1}^* = f_k(x_k^*, u_k^*)$$

computed using the precomputed states x_k^*

L.R. Garcia Carrillo

TAMU-CC

Note. In an OL setting, both x_k^* and u_k^* , $\forall k \in \{1, 2, ..., K\}$ are precomputed before the game starts.

2. An optimal (time-consistent) state-FB policy γ^{FB} is

$$\gamma_k^{\text{FB}}(x_k) := \underset{u_k \in \mathcal{U}_K}{\operatorname{arg\,min}} \underbrace{\left(g_k(x_k, u_k) + V_{k+1}(f_k(x_k, u_k))\right)}_{\text{computed using the measured state } x_K}, \quad \forall k \in \{1, 2, \dots, K\}$$

Either of the above optimal policies leads to an optimal cost equal to $V_1(x_1)$.

L.R. Garcia Carrillo

TAMU-CC

Proof of Theorem 15.1.

Let u_k^* and x_k^* , $\forall k \in \{1, 2, ..., K\}$ be a trajectory arising from the OL or the state-FB policies.

Let \bar{u}_k and \bar{x}_k , $\forall k \in \{1, 2, ..., K\}$ be another (arbitrary) trajectory.

To prove optimality, show that the latter trajectory cannot lead to a cost lower than the former.

Since $V_k(x)$ satisfies the conditions in Theorem 15.1, and u_k^* achieves the infimum in $V_k(x)$, for every $k \in \{1, 2, ..., K\}$

$$V_k(x_k^*) = \inf_{u_k \in \mathcal{U}_k} \left(\left(g_k(x_k^*, u_k) + V_{k+1}(f_k(x_k^*, u_k)) \right) \\ = g_k(x_k^*, u_k^*) + V_{k+1}(f_k(x_k^*, u_k^*)) \right)$$

Since \bar{u}_k does not necessarily achieve the infimum, we have

$$V_k(\bar{x}_k) = \inf_{u_k \in \mathcal{U}_k} \left((g_k(\bar{x}_k, u_k) + V_{k+1}(f_k(\bar{x}_k, u_k))) \right)$$

$$\leq g_k(\bar{x}_k, \bar{u}_k) + V_{k+1}(f_k(\bar{x}_k, \bar{u}_k))$$

Summing both sides of $V_k(x_k^*)$ from k = 1 to k = K, we conclude

$$\sum_{k=1}^{K} V_k(x_k^*) = \sum_{k=1}^{K} g_k(x_k^*, u_k^*) + \sum_{k=1}^{K} V_{k+1}\left(\underbrace{f_k(x_k^*, u_k^*)}_{x_{k+1}^*}\right)$$
$$\Leftrightarrow \sum_{k=1}^{K} V_k(x_k^*) - \sum_{k=1}^{K} V_{k+1}(x_{k+1}^*) = \sum_{k=1}^{K} g_k(x_k^*, u_k^*)$$

L.R. Garcia Carrillo

TAMU-CC

One-Player Discrete-Time Games	Discrete-Time Cost-To-Go	Discrete-Time Dynamic Programming	Comput
		000000000000000000000000000000000000000	

Since

$$\sum_{k=1}^{K} V_k(x_k^*) - \sum_{k=1}^{K} V_{k+1}(x_{k+1}^*) = V_1(x_1) - V_{K+1}(x_{K+1}^*) = V_1(x_1)$$

We conclude that

$$V_1(x_1) = \sum_{k=1}^{K} g_k(x_k^*, u_k^*)$$

Now summing both sides of $V_k(\bar{x}_k)$ from k = 1 to k = K

$$\sum_{k=1}^{K} V_k(\bar{x}_k) \le \sum_{k=1}^{K} g_k(\bar{x}_k, \bar{u}_k) + \sum_{k=1}^{K} V_{k+1}\left(\underbrace{f_k(\bar{x}_k, \bar{u}_k)}_{\bar{x}_{k+1}}\right)$$
$$\Leftrightarrow \sum_{k=1}^{K} V_k(\bar{x}_k) - \sum_{k=1}^{K} V_{k+1}(\bar{x}_{k+1}) \le \sum_{k=1}^{K} g_k(\bar{x}_k, \bar{u}_k)$$

L.R. Garcia Carrillo

TAMU-CC

We conclude that

$$V_1(x_1) \le \sum_{k=1}^{K} g_k(\bar{x}_k, \bar{u}_k)$$

from which we obtain

$$V_1(x_1) = \sum_{k=1}^{K} g_k(x_k^*, u_k^*) \le \sum_{k=1}^{K} g_k(\bar{x}_k, \bar{u}_k)$$

Two conclusions can be drawn from this equation

1. The signal \bar{u}_k does not lead to a cost that is smaller than that of u_k^* .

2. $V_1(x_1)$ is equal to the optimal cost obtained with u_k^* .

TAMU-CC

If we had carried out the above proof on an interval $\{\ell, \ell+1, \ldots, K\}$ with initial state $x_{\ell} = x$, we would have concluded: $V_{\ell}(x)$ is the (optimal) value of the cost-to-go from state x at time ℓ .

Note 13. In the proof of **Theorem 15.1** we showed that it is not possible to achieve a cost lower than $V_1(x_1)$, regardless of the information structure.

This is because the signal \bar{u}_k considered could have been generated by a policy using any information structure and we showed that \bar{u}_k cannot lead to a cost smaller than $V_1(x_1)$.

L.R. Garcia Carrillo

Computational Complexity

L.R. Garcia Carrillo

TAMU-CC

For large state-spaces \mathcal{X} , the computational effort needed to compute the cost-to-go at all stages can be very large.

Question: Is it worth using dynamic programming, instead of doing an exhaustive search?

• to decide which option is best, estimate the computation involved in exploring each option.

Assumption: finite state-spaces and finite action spaces.

Exhaustive Search. Suppose a game has K stages. At the stage ℓ the number of actions available to the player is $|\mathcal{U}_{\ell}|$.

An exhaustive search over all possible selections of actions requires comparing the costs associated with as many options as

$$|\mathcal{U}_1| \times |\mathcal{U}_2| \times \cdots \times |\mathcal{U}_K|$$

Dynamic Programming. At a particular stage ℓ and for a specific value of the state x, computing the cost-to-go $V_{\ell}(x)$ requires comparing all the actions available, which requires $|\mathcal{U}_{\ell}|$ comparisons.

This has to be done for every state x and for every stage $\ell \in \{1, 2, ..., K\}$. The total number of comparisons is equal to

$$|\mathcal{U}_1| imes |\mathcal{X}_1| + |\mathcal{U}_2| imes |\mathcal{X}_2| + \dots + |\mathcal{U}_K| imes |\mathcal{X}_K|$$

where $|\mathcal{X}_{\ell}|$ denotes the number of possible states at the stage ℓ .

Dynamic Programming can result in significant savings provided that the size of the state space is small when compared to **Exhaustive Search**.

L.R. Garcia Carrillo

Example 15.1 (Tic-Tac-Toe).

Consider a (silly) version of the Tic-Tac-Toe game in which the same player places all the marks.

An **Exhaustive Search** among all possible ways to play would have to consider

- \bullet 9 possible ways to place the first \times
- 8 possible ways to place the subsequent \circ
- \bullet 7 possible ways to to place the first \times
- etc.,

leading to a total of

$$9! = 9 \times 8 \times \cdot \times 2 \times 1 = 362880$$

distinct options that must be compared.

L.R. Garcia Carrillo

TAMU-CC

For **Dynamic Programming**, the total number of comparisons needed turns out to be about 19 times smaller

Stage	Number of ×'s	Number of o's	$ \mathscr{X}_{\ell} $	$ \mathscr{U}_{\ell} $	$ \mathscr{X}_{\ell} imes \mathscr{U}_{\ell} $
1	0	0	1	9	9
2	1	0	9	8	72
3	1	1	$9 \times 8 = 72$	7	504
4	2	1	$\binom{9}{2} \times 7 = 252$	6	1512
5	2	2	$\binom{9}{2} \times \binom{7}{2} = 756$	5	3780
6	3	2	$\binom{9}{3} \times \binom{6}{2} = 1260$	4	5040
7	3	3	$\binom{9}{3} \times \binom{6}{3} = 1680$	3	5040
8	4	3	$\binom{9}{4} \times \binom{5}{3} = 1260$	2	2520
9	4	4	$\binom{9}{4} \times \binom{5}{4} = 630$	1	630
10	5	4	$\binom{9}{5} = 126$	0	0
Total number of comparisons needed					19107

In larger games, the difference between the two approaches is even more spectacular. This happens because many different sequences of actions collapse to the same state.

L.R. Garcia Carrillo

TAMU-CC

L.R. Garcia Carrillo

TAMU-CC

For games with finite state spaces and finite action spaces, the backwards iteration

$$V_{K+1}(x) = 0, \quad V_{\ell}(x) \inf_{u_{\ell} \in \mathcal{U}_{\ell}} \left(g_{\ell}(x, u_{\ell}) + V_{\ell+1}(f_{\ell}(x, u_{\ell})) \right), \quad \forall x \in \mathcal{X}$$

can be implemented very efficiently in MATLAB[®].

Enumerate all states so that the state-space can be viewed as

$$\mathcal{X} := \{1, 2, \dots, n_{\mathcal{X}}\}$$

Enumerate all actions so that the action space can be viewed as

$$\mathcal{U} := \{1, 2, \dots, n_{\mathcal{U}}\}$$

Assume that all states can occur at every stage and that all actions are also available at every stage.

L.R. Garcia Carrillo

TAMU-CC

Each function $f_k(x, u)$ and $g_k(x, u)$ that define the game dynamics and the stage-cost, can be represented by an $n_{\mathcal{X}} \times n_{\mathcal{U}}$ matrix with one row per state, one column per action.

Each cost-to-go $V_k(x)$ can be represented by an $n_{\mathcal{X}} \times 1$ column vector with one row per state.

Construct the following variables within $\mathbf{MATLAB}^{\textcircled{R}}$

F: a cell-array with K elements, each equal to an $n_{\mathcal{X}} \times n_{\mathcal{U}}$ matrix so that $F\{k\}$ represents the game dynamics function $f_k(x, u), \forall x \in \mathcal{X}, u \in \mathcal{U}, k \in \{1, 2, ..., K\}.$

Specifically, the entry $F\{k\}(i,j)$ of the matrix $F\{k\}$ is the state $f_k(i,j)$.

L.R. Garcia Carrillo

TAMU-CC

G: a cell-array with K elements, each equal to an $n_{\mathcal{X}} \times n_{\mathcal{U}}$ matrix so that $G\{k\}$ represents the stage-cost function $g_k(x, u)$, $\forall x \in \mathcal{X}, u \in \mathcal{U}, k \in \{1, 2, ..., K\}.$

Specifically, the entry $G\{k\}(i,j)$ of the matrix $G\{k\}$ is the per-stage cost $g_k(i,j)$.

Construct the cost-to-go $V_k(x)$ using the **MATLAB**[®] code: $V{K+1} = zeros(size(G{K},1),1);$ for k = K:-1:1 $V{k} = min(G{k}+V{k+1}(F{k}),[],2);$ end

[],2 in the min function: minimization performed along the second dimension of the matrix (i.e., along the columns).

L.R. Garcia Carrillo

TAMU-CC

Running this code, the following variable is created:

V: a cell-array with K + 1 elements, each equal to an $n_{\mathcal{X}} \times 1$ column vector so that $V\{k\}$ represents the cost-to-go $V_k(x)$, $\forall x \in \mathcal{X}, k \in \{1, 2, \dots, K\}$.

Specifically, the entry $V\{k\}(i)$ of the vector $V\{k\}$ is the cost-to-go $V_k(i)$ from state i at stage k.

For a given state x at stage k, the optimal action u given by

$$\gamma_k^{\text{FB}}(x_k) := \underset{u_k \in \mathcal{U}_K}{\operatorname{arg\,min}} \underbrace{\left(g_k(x_k, u_k) + V_{k+1}(f_k(x_k, u_k))\right)}, \quad \forall k \in \{1, 2, \dots, K\}$$

computed using the measured state x_K

can be obtained using

L.R. Garcia Carrillo

TAMU-CC

L.R. Garcia Carrillo

TAMU-CC

Discrete-time **linear quadratic one-player games** are characterized by linear dynamics of the form

$$x_{k+1} = \underbrace{Ax_k + Bu_k}_{f_k(x_k, u_k)}, \quad x \in \mathbb{R}^n, u \in \mathbb{R}^n, k \in \{1, 2, \dots, K\}$$

and a stage-additive quadratic cost of the form

$$J := \sum_{k=1}^{K} \left(\underbrace{\|y_k\|^2 + u_k' R u_k}_{g_k(x_k, u_k)} \right) = \sum_{k=1}^{K} \left(\underbrace{x_k' C' C x_k + u_k' R u_k}_{g_k(x_k, u_k)} \right)$$

where

$$y_k = Cx_k, \quad \forall k \in \{1, 2, \dots, K\}$$

L.R. Garcia Carrillo

TAMU-CC

The cost function

$$J := \sum_{k=1}^{K} \left(\underbrace{\|y_k\|^2 + u_k' R u_k}_{g_k(x_k, u_k)} \right) = \sum_{k=1}^{K} \left(\underbrace{x_k' C' C x_k + u_k' R u_k}_{g_k(x_k, u_k)} \right)$$

captures scenarios in which the (only) player wants to make the $y_k, k \in \{1, 2, ..., K\}$ small without **spending** much effort in their action u_k .

Symmetric positive definite matrix R: a conversion factor that maps units of u_k into units of y_k .

Theorem 15.1 can be used to compute optimal policies for this game and leads to the following result.

L.R. Garcia Carrillo

TAMU-CC

Corollary 15.1. Suppose we define the matrices P_k according to the (backwards) recursion:

$$P_{K+1} = 0$$

$$P_k = C'C + A'P_{k+1}A - A'P_{k+1}B(R + B'P_{k+1}B)^{-1}B'P_{k+1}A$$

 $\forall k \in \{1, 2, \dots, K\}$, and that $R + B' P_{k+1} B \ge 0, \quad \forall k \in \{1, 2, \dots, K\}$

Then the state-FB policy

 $\gamma_k^{\mathbf{FB}}(x_k) = -(R + B'P_{k+1}B)^{-1}B'P_{k+1}A, \quad \forall k \in \{1, 2, \dots, K\}$

is an optimal (time-consistent) state-FB policy for the linear quadratic (LQ) one-player game, leading to an optimal cost equal to $x_1P_1x_1$.

L.R. Garcia Carrillo

Notation: The equation

$$\begin{split} P_{K+1} &= 0 \\ P_k &= C'C + A'P_{k+1}A - A'P_{k+1}B(R+B'P_{k+1}B)^{-1}B'P_{k+1}A \end{split}$$

 $\forall k \in \{1, 2, \dots, K\}$, is called a **difference Riccati equation**.

L.R. Garcia Carrillo

TAMU-CC

L.R. Garcia Carrillo

TAMU-CC

15.1. Prove Corollary 15.1.

Hint: Try to find a solution to

$$V_k(x) = \begin{cases} 0 & k = K+1\\ \inf_{u_k \in \mathcal{U}_k} \left(g_k(x, u_k) + V_{k+1}(f_k(x, u_\ell)) \right) & k \in \{1, 2, \dots, K\}, \end{cases}$$

$$\forall x \in \mathcal{X}, \text{ of the form } V_k(x) = x' P_k x, \forall x \in \mathbb{R}^n,$$

 $k \in \{1, 2, \dots, K+1\}$ for appropriately selected symmetric $n \times n$ matrices P_k .

L.R. Garcia Carrillo

TAMU-CC

Solution to Exercise 15.1. For this game,
$$V_k(x)$$
 is given by

$$V_k(x) = \begin{cases} 0 & k = K+1 \\ \min_{u_k \in \mathbb{R}^{n_u}} \left(x'C'Cx + u'_kRu_k + V_{k+1}(Ax + Bu_k) \right) & k \in \{1, 2, \dots, K\} \end{cases}$$

 $\forall x \in \mathbb{R}^n$. Inspired by the quadratic form of the per-stage cost, we will try to find a solution to $V_k(x)$ of the form

$$V_k(x) = x' P_k x, \quad \forall x \in \mathbb{R}^n, \quad k \in \{1, 2, \dots, K+1\}$$

for appropriately selected symmetric $n \times n$ matrices P_k . For $V_k(x)$ to hold, we need to have $P_{K+1} = 0$ and

$$x'P_{k}x = \min_{u_{k}\in\mathbb{R}^{n_{u}}} \left(x'C'Cx + u_{k}'Ru_{k} + (Ax + Bu_{k})'P_{k+1}(Ax + Bu_{k}) \right)$$
$$= \min_{u_{k}\in\mathbb{R}^{n_{u}}} \left(x'(C'C + A'P_{k+1}A)x + u_{k}'(R + B'P_{k+1}B)u_{k} + 2x'A'P_{k+1}Bu_{k} \right)$$

 $\forall x \in \mathbb{R}^n, k \in \{1, 2, \dots, K\}.$

L.R. Garcia Carrillo

TAMU-CC

Since the function to optimize is quadratic, to compute the minimum in $x'P_kx$ we simply need to make the appropriate gradient equal to zero:

$$\frac{\partial}{\partial u_k} \Big(x'(C'C + A'P_{k+1}A)x + u_k'(R + B'P_{k+1}B)u_k + 2x'A'P_{k+1}Bu_k \Big) = 0$$

$$\Leftrightarrow 2u_k'(R + B'P_{k+1}B) + 2x'A'P_{k+1}Bu_k = 0$$

$$\Leftrightarrow u_k = -(R + B'P_{k+1}B)^{-1}B'P_{k+1}Ax$$

Therefore

$$\min_{u_k \in \mathbb{R}^{n_u}} \left(\underbrace{x'(C'C + A'P_{k+1}A)x + u_k'(R + B'P_{k+1}B)u_k + 2x'A'P_{k+1}Bu_k}_{u_k = -(R + B'P_{k+1}B)^{-1}B'P_{k+1}Ax} \right)$$
$$= x'(C'C + A'P_{k+1}A - A'P_{k+1}B(R + B'P_{k+1}B)^{-1}B'P_{k+1}A)x$$

L.R. Garcia Carrillo

TAMU-CC

This means that $x'P_kx$ is of the form

 $x'P_kx = x'(C'C + A'P_{k+1}A - A'P_{k+1}B(R + B'P_{k+1}B)^{-1}B'P_{k+1}A)x$

which holds in view of the **difference Riccati equation**.

Corollary 15.1 then follows directly from **Theorem 15.1**, since we have found a sequence of functions $V_1(x), V_2(x), \ldots, V_{K+1}(x)$ that satisfies $V_k(x)$ for which the infimum is always achieved at the point u_k given by making the appropriate gradient equal to zero.

Note. The value for the minimum will provide the optimal policy.

End of Lecture

15 - One-Player Dynamic Games

Questions?

L.R. Garcia Carrillo

TAMU-CC