COSC-6590/GSCS-6390

Games: Theory and Applications

Lecture 15 - One-Player Dynamic Games

Luis Rodolfo Garcia Carrillo

School of Engineering and Computing Sciences
Texas A&M University - Corpus Christi, USA

: Theory and Applications Lecture 15 - One

Table of contents

@ One-Player Discrete-Time Games

© Discrete-Time Cost-To-Go

© Discrete-Time Dynamic Programming

@ Computational Complexity

@ Solving Finite One-Player Games with MATLAB
@ Linear Quadratic Dynamic Games

e Practice Exercise

90 Games: Theory and Applications L

One-Player Discrete-Time Games
@00

One-Player Discrete-Time Games

and Applications L One-P1

One-Player Disc ime Games

oeo

One-Player Discrete-Time Games

Solution methods for one-player (discrete-time)
dynamic games, which are simple optimizations

This corresponds to dynamics of the form

v = f (@ s) VRe{L2. K}
—— ~—~ ~—~ ~—~
entry node at “dynamics” state at Py’s action
stage k + 1 at stage k stage k at stage k

starting at some initial state x; in the state space X.

At each time k, the action uy is required to belong to a given
action space Uj.

90 Games: Theory and Applications L

One-Player Discrete-Time Games
ooe

One-Player Discrete-Time Games

Assume finite horizon (K < oo) stage-additive costs of the form

K
T =Y gk, ur)
k=1

that the (only) player wants to minimize using either:
Open-Loop (OL) policy

wp = YO (1), Vk e {1,2,...,K}
State-Feedback (FB) policy

uk:FYIEB(xk)a Vk€{17277K}

Games: Theory and Applications Lecture 15 - C

Discrete-Time Cost-To-Go
[JeJele]e]

Discrete-Time Cost-To-Go

and Applications L One-P1

Discrete-Time Cost-To-Go
o] Jelele]

Discrete-Time Cost-To-Go

Suppose the player is at some state = at stage ¢
e z would perhaps not be the optimal place to be at ¢
o still, the player wants to estimate the cost, if playing
optimally from this point on, so as to minimize costs
incurred in remaining stages.

Cost-to-Go from state z € X’ at time ¢ € {1,2,..., K}

K
Vi(w) := inf > ge(wr,up), VozeX
k=t

ug €U U1 €U - UK EUK

with the sequence {z, € X : k={¢,0+1,..., K} starting at
zy = x and satisfying the dynamics

Tp+1 = (T, ug) Vke{l,+1,...,K -1}

Games: Theory and Applications Lecture 15 - C

Discrete-Time Cost-To-Go
[e]e] lele]

Discrete-Time Cost-To-Go

Note: The cost-to-go is a function of x and /.
Often called the value function of the game/optimization.

Computing the cost-to-go Vi(x1) from the initial state x; at the
first stage ¢ = 1 essentially amounts to minimizing the cost

K
T =" g(wr, ur)
k=1

for the dynamics

Thi1 = fr (Tp Uk) vk e {1,2,...,K}
—— ~—~ ~—~ ~—~
entry node at “dynamics” state at Py’s action
stage k + 1 at stage k stage k at stage k

This leads to two important conclusions.

Games: Theory and Applications L

Discrete-Time Cost-To-Go
[e]e]e] Jo]

Discrete-Time Cost-To-Go

Conclusion 1. Regardless of the information structure
considered (OL, FB, other), it is not possible to obtain a cost

K
J =Y grl(wr uk)
=1

lower than Vi(x1).

This is because in the minimization
K

Ve(x) := inf p(Tp,ug), Yre X
(z) up€Up w41 €U 1 - UL EUK ;g ()
we place no constraints on what information may or may not be
available to compute the optimal wuy.

e Vi(x1): lower bound on the smallest value achieved for .J.

Games: Theory and Applications Le

Discrete-Time Cost-To-Go
[e]e]ele]]

Discrete-Time Cost-To-Go

Conclusion 2. If the infimum in the minimization

Vi(z) := inf gk (T, u), Vo e X
ug €U, up 1 E€EUg 11, Uk EUK P

is achieved for a specific sequence
u] €Uy, uy €Us, ..., ug € Ug

computed before the game starts just with knowledge of x1,
then this sequence of actions provides an optimal OL policy

(1) =i, A9 (@) =k, AR (@) =
Here, Vi(z1) is the smallest value that can be achieved for J.

This would not be the case, e.g., if there were stochastic events

(€ rrillo

Games: Theory and Applications Le

Discrete-Time Dynamic Programming
0000000000000 000000

Discrete-Time Dynamic Programming

and Applications L One-P1

Discrete-Time Dynamic Programming
0000000000000 000000

Discrete-Time Dynamic Programming

DP is a computationally efficient recursive technique
o useful to compute the cost-to-go

For the last stage K, the cost-to-go Vi () is the minimum of
9K (TK, uK)
over the possible actions ug, for a game that starts with
r = x, and therefore
Vik(x) = inf gr(z,uk), Vee X
u EUK

Note: When gx(+) is continuously differentiable, the
optimization can be done using calculus by solving

dgk (Tk, uK)

=0
duK

Games: Theory and Applications Lecture 15 - One

Discrete-Time Dynamic Programming
00e0000000000000000

Discrete-Time Dynamic Programming

For each state x, we compute Vi (z) by solving a single
parameter optimization over the set Ug.

For the previous stages ¢ < K, we have that

K
Vi(z) == inf > gkl ur)
upEUy,..., u EUK
k=¢
K
= inf go(z,up) + E gr(zr, ug)
upEUy,...,.u EUK N—_——
independent of k=t+1
el uK dependent on all
Ug, ..., wK
K
= inf | go(z,w)+ inf > " gz, ur)
up €Uy Ug 1 €Uy 1, UK EUK h—tt1

Games: Theory and Applications Le

Discrete-Time Dynamic Programming
0000000000000 000000

Discrete-Time Dynamic Programming

Where we used these facts:
e first equality: we must set z; = z to compute Vy(z)

e second equality: gys(x,us) does not depend on ugy1q,...,ux

However

K

inf gr(Tk, ug
Upr1 €Uy 1, UK EUK k:;#l (w,)
is the minimum cost for a game starting at stage £+ 1 with state

xpp1 = fo(z,up)

which is precisely the cost-to-go Vi1 (fe(x,ur)).

(€ Jarril

Games: Theory and Applications Lecture 15 - On

Discrete-Time Dynamic Programming
0000@00000000000000

Discrete-Time Dynamic Programming

We therefore conclude

Ve(z) = inf (gg(x,ug)+W+1(fg(ac,ug))>, Vee X, £€{1,2,...,K —1}

wug EUy

Note: If we know the function V4i(), we can compute each
Ve(z) by solving a single-parameter optimization over set Up.
This optimization produces the optimal action u; to be used
when the state is at x,.

It is convenient to define Vi iq(z) =0, Vre X
Allowing us to re-write Vi (z) and Vy(z) using

V(@) = inf (g, ue) + Ve (felw,w))) Vo € ¥

now valid V¢ € {1,2,..., K}

Games: Theory and Applications Lecture 15 - C

Discrete-Time Dynamic Programming
0000000000000 000000

Discrete-Time Dynamic Programming

For the case of £ = 1 and x = x; and when the infima in Vj(z)
are actually minima, the points at which these infima are
achieved can be used to construct an open-loop policy.

Specifically, we can obtain:

uj from Vy(x) with £ =1 and = = 1,
e leading to x5 = fi(z1,u});

us from Vy(x) with £ =2 and = = 3,
o leading to a3 = fo(x3, ub);

uj from Vy(z) with £ = 3 and z = 3,
o leading to z} = fa(x}, ub);

etc

Games: Theory and Applications Le

Discrete-Time Dynamic Programming
000000 @000000000000

Open-Loop Optimization

Procedure to compute the OL policy v° that minimizes

K
J =" gr(wk, up)
for the dynamics k=1

Tht1 = fr Tk s Uk Vk € {1,2,...,K}
—~— ~~~ ~~ ~~
entry node at “dynamics” state at Py’s action
stage k + 1 at stage k stage k at stage k

Step 1: Compute the cost-to-go using backward iteration
starting from ¢ = K, proceeding backward in time until £ =1

Vice(2) =0, Ve(w) = inf (ge(aue) + Via(fela.w))), Vo € X

Note: To do the backwards iteration, compute each V;(z) for

every possible value of the state x at stage /.
(€ ia Carril

Games: Theory and Applications Lecture 15 - On

Discrete-Time Dynamic Pr
0000000 e00000000000

Open-Loop Optimization

Step 2: Compute the sequence of actions
ul € Uy, uy €Us, ..., ur, € Uk

that minimize Vi (z1) using a forward iteration, starting from
k =1 and proceeding forward in time until £k = K:

v =mup = argmin (gu(of.) + Vin (fu(ekom))) e = filo)
ureUK

computed using the precomputed states x}

Assumption: infimum of g,(x},us) + Vi1 (fe(x),ue)) is
achieved at some point u € Ug.

o if this is not the case, then this procedure fails.
When the infimum is achieved at multiple points, any one can
be used in the equation.

Games: Theory and Applications L

Discrete-Time Dynamic Programming
00000000 @0000000000

Open-Loop Optimization

Step 3: Finally, the optimal OL policy v° is given by
WOa1) =l AN@) =g e, Q@) = uk,

Observation: All the 2} and uj, in Step 2 are precomputed
and depend solely on the initial state x.

Thus, v°F is indeed an OL policy.

Games: Theory and Applications Lecture 15 - On

Discrete-Time Dynamic Programming
000000000 e000000000

State-Feedback Optimization

Suppose we use the optimal OL policy v°% defined in Step 3,
which selects the actions

we =708 (1) == ul, Vke{1,2,...,K}

In this case, the precomputed states x; defined in Step 2 match
precisely the states xj that would be measured during the game.

Therefore, we would get the same minimum value Vj(x1) for the
cost J, if we were using a state-FB policy 2 defined by

WEB(xk) = argrgin (gk.(a:k,uk.) + Vi1 (fr(xg, uk))>, Vke{1,2,...,K}
ureUK

computed using the measured state z i

: Theory and Applications Lecture 15 - One

Discrete-Time Dynamic Programming
000000000 0e00000000

State-Feedback Optimization

When all the gg(xg, ug) + Vit1(fr(zk, ur)) have a minimum for
some uy, € U, this state-FB policy 7B can do as well as the
optimal OL policy v°.

Since it is not possible to obtain a value for the cost J lower
than Vi (z1), we conclude that i B(x) is an optimal FB policy.
Notation 5 (Time-consistent policy).

A state-FB policy 1 B (x) that minimizes the cost-to-go from

current state xj at time k is said to be time consistent.

There may be policies 7B that still achieve a cost as low as
Vi(x1), but are not time consistent because 7} ©(z)) may not
achieve the minimum in ~} 2(xy) for every state zy.

Games: Theory and Applications Lecture 15 - C

Discrete-Time Dynamic Programming
00000000000 e0000000

State-Feedback Optimization

Why? it is irrelevant for a policy to achieve the minimum in
WEB(:ﬁk) for states xp never reached through an optimal path.

Time-consistent policies are robust

If due to an unexpected event the state at some time k is taken
to a point other than

Tpg1 7 fu(xr, ug)

then a time-consistent policy is still optimal in minimizing the
cost-to-go from the stage k + 1 forward.

OL policies are not robust because they rely on precomputed
states and cannot react to unexpected events.

Games: Theory and Applications Lecture 15 - One

Discrete-Time Dynamic Programming
00000000000 0e000000

State-Feedback Optimization

Theorem 15.1. Consider the sequence of functions
Vi(z), Va(x), ..., Vikii(z) uniquely defined by

0 k=K+1
Vk(w) - inf“kEuk (gk(ﬂf,Uk)+Vk+1(fk(f13,ug))> ke {1a23"'aK}7

Va € X. Then Vi(z) is equal to the cost-to-go, and if the
infimum is always achieved at some point in Uy, we have that:

1. For any initial state z1, an optimal OL policy v° is
O (1) = up, Vke{l,2,...,K},

with u}, obtained from solving

v = uf = argmin (gu(of ue) + Vi (e, w))) o = fulalug)
ur el

computed using the precomputed states x}

: Theory and Applications Lecture 15 - One

Discrete-Time Dynamic Programming
0000000000000 e00000

State-Feedback Optimization

Note. In an OL setting, both z} and u}, Vk € {1,2,..., K} are
precomputed before the game starts.

2. An optimal (time-consistent) state-FB policy v is

'yEB(xk) := arg min (gk(:vk,uk) + Vi1 (fr(xk, uk))>, Vke{1,2,...,K}
ur EUK

computed using the measured state z i

Either of the above optimal policies leads to an optimal cost
equal to Vi(z1).

Games: Theory and Applications Lecture 15 - One

Discrete-Time Dynamic Programming
0000000000000 0e0000

State-Feedback Optimization

Proof of Theorem 15.1.
Let uj, and z7, Vk € {1,2,..., K} be a trajectory arising from
the OL or the state-FB policies.

Let @y and Zy, Vk € {1,2,..., K} be another (arbitrary)
trajectory.

To prove optimality, show that the latter trajectory cannot lead
to a cost lower than the former.

Since Vj(x) satisfies the conditions in Theorem 15.1, and u}
achieves the infimum in Vi (z), for every k € {1,2,..., K}
Vilai) = it ((g(aiue) + Vi (fi(ai ue)

= gr(@h, up) + Vir (i (2, ug)

: Theory and Applications Lecture 15 - C

Discrete-Time Dynamic Programming
0000000000000 00e000

State-Feedback Optimization

Since u; does not necessarily achieve the infimum, we have

Vi@ = it ((g(@0we) + Vi (@, ue))

< gk (T, Ur) + Vieyr (fr (T,)

Summing both sides of Vi (z}) from k =1 to k = K, we

conclude
K K K
Vi(z}) = Tr,uy) + \% Tr, U
kZ:l k() ;gk(s UE) kZ:l k:+1<fk(k k;))
TEq
K K K
&> Vil@h) =Y Vi (@i) = > gelah, up)
k=1 k=1 k=1

Games: Theory and Applications Le

Discrete-Time Dynamic Programming
0000000000000 000e00

State-Feedback Optimization

Since

K
D Vilzi) = D Vi (@ign) = Vila) = Viepa (@) = Vi)

We conclude that

ng Tj, Uf)

Now summing both sides of Vk(a_:)fromk=1to k=K

K

ZVk Ty) < ng Ty,) ZVk-&-l(fk(jmak))

k=1 _
Tht1

K K K
& Z Vie(Zg) — Z Vier1(Zp41) < ng(fkﬂk)
=1 =1 =1

: Theory and Applications Lecture 15 - One

Discrete-Time Dynamic Programming
0000000000000 0000e0

State-Feedback Optimization

We conclude that
K
Vi(z1) < gn(Tn,)
k=1

from which we obtain

K

L/1($1): 2{:9 $k7uk

k=1 k=1

Mw

$k,uk

Two conclusions can be drawn from this equation

1. The signal u; does not lead to a cost that is smaller than
that of uj.

2. Vi(x1) is equal to the optimal cost obtained with uj.

Games: Theory and Applications Lecture 15 - On

Discrete-Time Dynamic Programming
0000000000000 00000e

State-Feedback Optimization

If we had carried out the above proof on an interval
{¢,+1,..., K} with initial state zy = x, we would have
concluded: V() is the (optimal) value of the cost-to-go from
state x at time /.

Note 13. In the proof of Theorem 15.1 we showed that it is
not possible to achieve a cost lower than V;(z1), regardless of
the information structure.

This is because the signal @ considered could have been
generated by a policy using any information structure and we
showed that @y cannot lead to a cost smaller than V(7).

Games: Theory and Applications Lecture 15 - C

Comput
[e]ele]e]

Computational Complexity

Comput
(o] lele]e]

Computational Complexity

For large state-spaces X, the computational effort needed to
compute the cost-to-go at all stages can be very large.

Question: Is it worth using dynamic programming,
instead of doing an exhaustive search?
o to decide which option is best, estimate the computation
involved in exploring each option.
Assumption: finite state-spaces and finite action spaces.

Exhaustive Search. Suppose a game has K stages. At the
stage ¢ the number of actions available to the player is |Uy|.

An exhaustive search over all possible selections of actions
requires comparing the costs associated with as many options as

(U] > (U | - x UK

Games: Theory and Applications Lecture 15 - C

Comput
[e]e] Tele]

Computational Complexity

Dynamic Programming. At a particular stage ¢ and for a
specific value of the state x, computing the cost-to-go Vy(x)
requires comparing all the actions available, which requires |[U|
comparisons.

This has to be done for every state x and for every stage
¢e{1,2,...,K}. The total number of comparisons is equal to

U] < ||+ [Us| < [Xo| + - -+ Ui | < | Xk |
where |X;| denotes the number of possible states at the stage /.

Dynamic Programming can result in significant savings
provided that the size of the state space is small when
compared to Exhaustive Search.

Games: Theory and Applications Lecture 15 - C

Comput
[ee]e] o]

Computational Complexity

Example 15.1 (Tic-Tac-Toe).

Consider a (silly) version of the Tic-Tac-Toe game in which the
same player places all the marks.

An Exhaustive Search among all possible ways to play would
have to consider

@ 9 possible ways to place the first x

@ 8 possible ways to place the subsequent o

@ 7 possible ways to to place the first x

@ efc.,
leading to a total of

=9 x8x-x2x1=2362880

distinct options that must be compared.

Games: Theory and Applications Lecture 15 - On

Comput
[ee]e]e]]

Computational Complexity

For Dynamic Programming, the total number of
comparisons needed turns out to be about 19 times smaller

Stage | Number of x’s Number of o’s | 2| % | | 2] % | %)
I 0 0 1 9 9
2 1 0 9 8 72
3 1 1 9x8="72 7 504
4 2 1 ()x7=252 | 6 1512
5 2 2 () x(G) =156 | s 3780
6 3 2) x () =1260] 4 5040
7 3 3 () x(=168 | 3 5040
8 4 3 (jg) x(3) =1260 | 2 2520
9 4 4 () x(@) =630 | 1 630
10 5 4 () =126 0 0
Total number of comparisons needed 19107

In larger games, the difference between the two approaches is
even more spectacular. This happens because many

Solving Finite One-Player Games with
MATLAB

: Theory and Applications Lecture 15 - One

Solving Finite One-Player Games with MATLAB

For games with finite state spaces and finite action spaces, the
backwards iteration

Vit1(z) =0, Vi(x) uig{,@ (92(337’&@) + V?z+1(fe(337’ue))>a Vred

can be implemented very efficiently in MATLAB®.

Enumerate all states so that the state-space can be viewed as
X :={1,2,...,nx}

Enumerate all actions so that the action space can be viewed as
U:=11,2,...,ny}

Assume that all states can occur at every stage and that all
actions are also available at every stage.

Games: Theory and Applications Lecture 15 - C

Solving Finite One-Player Games with MATLAB

Each function fi(z,u) and gx(x,u) that define the game
dynamics and the stage-cost, can be represented by an ny x ny
matrix with one row per state, one column per action.

Each cost-to-go Vi (x) can be represented by an ny x 1 column
vector with one row per state.

Construct the following variables within MATLAB®

F : a cell-array with K elements, each equal to an ny X ny
matrix so that F{k} represents the game dynamics function
fe(z,u),Ve e X, uel, ke {1,2,...,K}.

Specifically, the entry F{k}(i,j) of the matrix F{k} is the state

Games: Theory and Applications Lecture 15 - On

Solving Finite One-Player Games with MATLAB

G : a cell-array with K elements, each equal to an ny X ny
matrix so that G{k} represents the stage-cost function g (z,u),
Vee X,uel, ke{l,2,...,K}.

Specifically, the entry G{k}(i,j) of the matrix G{k} is the
per-stage cost gx (i, 7).

Construct the cost-to-go Vj(z) using the MATLAB® code:

V{K+1} = zeros(size(G{K},1),1);
for k = K:-1:1

V{k} = min(G{k}+V{k+1}(F{k}),[1,2);
end

[1,2 in the min function: minimization performed along the
second dimension of the matrix (i.e., along the columns).

Games: Theory and Applications Lecture 15 - On

Solving Finite One-Player Games with MATLAB

Running this code, the following variable is created:

V : a cell-array with K 4 1 elements, each equal to an ny x 1
column vector so that V{k} represents the cost-to-go Vi(x),
Vee X, ke{l,2,...,K}.

Specifically, the entry V{k}(i) of the vector V{k} is the
cost-to-go Vi (i) from state i at stage k.

For a given state x at stage k, the optimal action u given by

VSB(wk)iziargInhl(gk($k7uk)4’V%+4(fk(xkauk))), Vke{l,2,...,K}
up EUK

computed using the measured state z i

can be obtained using

[~,u] = min(G{k}(x, :)+V{k+1}(F{k}(x,:))’,[],2);

Games: Theory and Applications Lecture 15 - On

Linear Quadratic Dynamic Games

Linear Quadratic Dynamic Games

Discrete-time linear quadratic one-player games are
characterized by linear dynamics of the form

Tpy1 = Axp + Buy, v €R" ueR" ke {l,2,...,K}
—_——
Tr(zr,ur)

and a stage-additive quadratic cost of the form

J = i (HkaQ + UklRUk) = i (%'C"ka + Uk/RUk>

k=1 k=1

gk (Tk,ur) 9k (Truk)

where

yr = Cxy, Vke {1,2,..., K}

Games: Theory and Applications Lecture 15 - One

Linear Quadratic Dynamic Games

The cost function

K

J = Z (Hka2 + uk/Ruk> = i (xk/C,CfL‘kj‘ uk/Ruk>

=1 =1
k gk (Tk,ur) Ik (Tr,uk)

captures scenarios in which the (only) player wants to make the
v, k € {1,2,..., K} small without spending much effort in
their action wuy.

Symmetric positive definite matrix R: a conversion factor that

maps units of uy into units of yy.

Theorem 15.1 can be used to compute optimal policies for
this game and leads to the following result.

Games: Theory and Applications Lecture 15 - C

Linear Quadratic Dynamic Games

Corollary 15.1. Suppose we define the matrices Py according
to the (backwards) recursion:

Pki1=0
P,=C'C+ APy 1A— APy 1B(R+ B Pyy1B) 'B' Py A

Vk € {1,2,..., K}, and that
R+ B'P,.1B>0, Vke{l,2,...,K}
Then the state-FB policy
vEB(z) = —(R+ B'P, 1 B) 'B'Po A, Ve {1,2,...,K}

is an optimal (time-consistent) state-FB policy for the linear
quadratic (LQ) one-player game, leading to an optimal cost
equal to x1 Pjxq.

Games: Theory and Applications Lecture 15 - On

Linear Quadratic Dynamic Games

Notation: The equation

Pgi1=0
P,=C'C+ APy 1A— APy 1B(R+ B Pyy1B) 'B' Py A

Vk € {1,2,...,K}, is called a difference Riccati equation.

Games: Theory and Applications Lecture 15 - One

Practice Exercise

and Applications L One-P1

Practice Exercise

15.1. Prove Corollary 15.1.
Hint: Try to find a solution to
v 0 k=K+1
ko) = infy, eus, (Qk(%uk) + Vk+1(fk(w7ue))) ke{l,2,....,K},

Vx € X, of the form Vj(z) = 2’ Pyx, Vo € R™,
ke {l1,2,..., K+ 1} for appropriately selected symmetric n x n
matrices Pg.

Games: Theory and Applications Lecture 15 - C

Practice Exercise

Solution to Exercise 15.1. For this game, Vj(z) is given by
{ 0 k=K+1

Vi(z) = ming, crru (w'C"Cx + up, Rug, + Vigp1 (Az + Buk)) ke{l,2,...,K}

Vz € R™. Inspired by the quadratic form of the per-stage cost,
we will try to find a solution to Vj(z) of the form

Vi(z) =2'Pex, VzeR", ke {l,2,...,K +1}
for appropriately selected symmetric n X n matrices Pj. For

Vi(x) to hold, we need to have Pxy1 = 0 and

2’ P,z = min (w'C’/Cx +up' Ruy + (Az + Buy) Pry1 (Az + Buk))

up ERMu

= min (x'(C’/C + A Py Az + up' (R4 B Pyt B)ug + 2x’A/Pk+lBuk>

up ERMu

Vee R" ke {l,2,...,K}.

: Theory and Applications Lecture 15 - One

Practice Exercise

Since the function to optimize is quadratic, to compute the
minimum in 2’ P2z we simply need to make the appropriate
gradient equal to zero:

a% (CL‘,(C,C =+ A,Pk+1A)£L‘ + uk'(R =+ B/Pk+1B)uk =+ QIIA/Pk+1B’U,k> =0
k

= 2uk/(R + BlPk+1B) + 2:E’A'Pk+1Buk =0
& up=—(R+ B'P.y1B) 'B' Py Ax

Therefore

min (x’(c’c + A'Pey1A)z + u' (R + B' Poyr B)ug + 22’ A Pty Buy)

wy ERMu

up=—(R+B'Py 1 B)~ 1B/ P, A

=2'(C'C+ A'PryA— A'Pyy1 B(R+ B'Pyy1B) ' B’ Poy1 Az

Games: Theory and Applications Le

Practice Exercise

This means that 2’ P,z is of the form

2’ P =2/ (C'C + APy 1A — APy 1B(R+ B'P,1B) 'B' Py 1 A)x

which holds in view of the difference Riccati equation.

Corollary 15.1 then follows directly from Theorem 15.1,
since we have found a sequence of functions

Vi(z), Va(x), ..., Viki1(z) that satisfies Vi (z) for which the
infimum is always achieved at the point u; given by making the
appropriate gradient equal to zero.

Note. The value for the minimum will provide the optimal
policy.

Games: Theory and Applications Lecture 15 - C

End of Lecture

15 - One-Player Dynamic Games

Questions?

and Applications L

	One-Player Discrete-Time Games
	Discrete-Time Cost-To-Go
	Discrete-Time Dynamic Programming
	Computational Complexity
	Solving Finite One-Player Games with MATLAB
	Linear Quadratic Dynamic Games
	Practice Exercise

