
One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

COSC-6590/GSCS-6390

Games: Theory and Applications

Lecture 15 - One-Player Dynamic Games

Luis Rodolfo Garcia Carrillo

School of Engineering and Computing Sciences
Texas A&M University - Corpus Christi, USA

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Table of contents

1 One-Player Discrete-Time Games

2 Discrete-Time Cost-To-Go

3 Discrete-Time Dynamic Programming

4 Computational Complexity

5 Solving Finite One-Player Games with MATLAB

6 Linear Quadratic Dynamic Games

7 Practice Exercise

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

One-Player Discrete-Time Games

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

One-Player Discrete-Time Games

Solution methods for one-player (discrete-time)
dynamic games, which are simple optimizations

This corresponds to dynamics of the form

xk+1︸ ︷︷ ︸
entry node at
stage k + 1

= fk︸︷︷︸
“dynamics”
at stage k

(
xk︸︷︷︸

state at
stage k

, uk︸︷︷︸
P1’s action
at stage k

)
∀k ∈ {1, 2, . . . ,K}

starting at some initial state x1 in the state space X .

At each time k, the action uk is required to belong to a given
action space Uk.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

One-Player Discrete-Time Games

Assume finite horizon (K <∞) stage-additive costs of the form

J :=

K∑
k=1

gk(xk, uk)

that the (only) player wants to minimize using either:

Open-Loop (OL) policy

uk = γOL
k (x1), ∀k ∈ {1, 2, . . . ,K}

State-Feedback (FB) policy

uk = γFBk (xk), ∀k ∈ {1, 2, . . . ,K}

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Cost-To-Go

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Cost-To-Go

Suppose the player is at some state x at stage `

x would perhaps not be the optimal place to be at `

still, the player wants to estimate the cost, if playing
optimally from this point on, so as to minimize costs
incurred in remaining stages.

Cost-to-Go from state x ∈ X at time ` ∈ {1, 2, . . . ,K}

V`(x) := inf
u`∈U`,u`+1∈U`+1,...,uk∈UK

K∑
k=`

gk(xk, uk), ∀x ∈ X

with the sequence {xk ∈ X : k = `, `+ 1, . . . ,K} starting at
x` = x and satisfying the dynamics

xk+1 = fk(xk, uk) ∀k ∈ {`, `+ 1, . . . ,K − 1}

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Cost-To-Go

Note: The cost-to-go is a function of x and `.
Often called the value function of the game/optimization.

Computing the cost-to-go V1(x1) from the initial state x1 at the
first stage ` = 1 essentially amounts to minimizing the cost

J :=

K∑
k=1

gk(xk, uk)

for the dynamics

xk+1︸ ︷︷ ︸
entry node at
stage k + 1

= fk︸︷︷︸
“dynamics”
at stage k

(
xk︸︷︷︸

state at
stage k

, uk︸︷︷︸
P1’s action
at stage k

)
∀k ∈ {1, 2, . . . ,K}

This leads to two important conclusions.
L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Cost-To-Go

Conclusion 1. Regardless of the information structure
considered (OL, FB, other), it is not possible to obtain a cost

J :=

K∑
k=1

gk(xk, uk)

lower than V1(x1).

This is because in the minimization

V`(x) := inf
u`∈U`,u`+1∈U`+1,...,uk∈UK

K∑
k=`

gk(xk, uk), ∀x ∈ X

we place no constraints on what information may or may not be
available to compute the optimal uk.

V1(x1): lower bound on the smallest value achieved for J .

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Cost-To-Go

Conclusion 2. If the infimum in the minimization

V`(x) := inf
u`∈U`,u`+1∈U`+1,...,uk∈UK

K∑
k=`

gk(xk, uk), ∀x ∈ X

is achieved for a specific sequence

u∗1 ∈ U1, u∗2 ∈ U2, . . . , uK ∈ UK

computed before the game starts just with knowledge of x1,
then this sequence of actions provides an optimal OL policy

γOL
1 (x1) := u∗1, γOL

2 (x1) := u∗2, . . . , γOL
K (x1) := u∗K ,

Here, V1(x1) is the smallest value that can be achieved for J .

This would not be the case, e.g., if there were stochastic events
L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

DP is a computationally efficient recursive technique

useful to compute the cost-to-go

For the last stage K, the cost-to-go VK(x) is the minimum of

gK(xK , uK)

over the possible actions uK , for a game that starts with
xK = x, and therefore

VK(x) = inf
uK∈UK

gK(x, uK), ∀x ∈ X

Note: When gK(·) is continuously differentiable, the
optimization can be done using calculus by solving

dgK(xK , uK)

duK
= 0

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

For each state x, we compute VK(x) by solving a single
parameter optimization over the set UK .

For the previous stages ` < K, we have that

V`(x) := inf
u`∈U`,...,uK∈UK

K∑
k=`

gk(xk, uk)

= inf
u`∈U`,...,uK∈UK

(
g`(x, u`)︸ ︷︷ ︸

independent of
u`+1, . . . , uK

+

K∑
k=`+1

gk(xk, uk)︸ ︷︷ ︸
dependent on all

u`, . . . , uK

)

= inf
u`∈U`

(
g`(x, u`) + inf

u`+1∈U`+1,...,uK∈UK

K∑
k=`+1

gk(xk, uk)

)
L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

Where we used these facts:

first equality: we must set x` = x to compute V`(x)

second equality: g`(x, u`) does not depend on u`+1, . . . , uK

However

inf
u`+1∈U`+1,...,uK∈UK

K∑
k=`+1

gk(xk, uk)

is the minimum cost for a game starting at stage `+ 1 with state

x`+1 = f`(x, u`)

which is precisely the cost-to-go V`+1(f`(x, u`)).
L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

We therefore conclude

V`(x) = inf
u`∈U`

(
g`(x, u`) + V`+1(f`(x, u`))

)
, ∀x ∈ X , ` ∈ {1, 2, . . . ,K − 1}

Note: If we know the function V`+1(·), we can compute each
V`(x) by solving a single-parameter optimization over set U`.
This optimization produces the optimal action u∗` to be used
when the state is at x`.

It is convenient to define VK+1(x) = 0, ∀x ∈ X

Allowing us to re-write VK(x) and V`(x) using

V`(x) = inf
u`∈U`

(
g`(x, u`) + V`+1(f`(x, u`))

)
, ∀x ∈ X

now valid ∀` ∈ {1, 2, . . . ,K}
L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

For the case of ` = 1 and x = x1 and when the infima in V`(x)
are actually minima, the points at which these infima are
achieved can be used to construct an open-loop policy.

Specifically, we can obtain:

u∗1 from V`(x) with ` = 1 and x = x1,

leading to x∗2 = f1(x1, u
∗
1);

u∗2 from V`(x) with ` = 2 and x = x∗2,

leading to x∗3 = f2(x
∗
2, u
∗
2);

u∗3 from V`(x) with ` = 3 and x = x∗3,

leading to x∗4 = f3(x
∗
3, u
∗
3);

etc. . .
L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Open-Loop Optimization

Procedure to compute the OL policy γOL that minimizes

J :=

K∑
k=1

gk(xk, uk)

for the dynamics

xk+1︸ ︷︷ ︸
entry node at
stage k + 1

= fk︸︷︷︸
“dynamics”
at stage k

(
xk︸︷︷︸

state at
stage k

, uk︸︷︷︸
P1’s action
at stage k

)
∀k ∈ {1, 2, . . . ,K}

Step 1: Compute the cost-to-go using backward iteration
starting from ` = K, proceeding backward in time until ` = 1

VK+1(x) = 0, V`(x) = inf
u`∈U`

(
g`(x, u`) + V`+1(f`(x, u`))

)
, ∀x ∈ X

Note: To do the backwards iteration, compute each V`(x) for
every possible value of the state x at stage `.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Open-Loop Optimization

Step 2: Compute the sequence of actions

u∗1 ∈ U1, u∗2 ∈ U2, . . . , u∗k ∈ UK
that minimize V1(x1) using a forward iteration, starting from
k = 1 and proceeding forward in time until k = K:

x∗1 = x1, u
∗
k = arg min

uk∈UK

(
gk(x∗k, uk) + Vk+1(fk(x∗k, uk))

)
︸ ︷︷ ︸

computed using the precomputed states x∗k

, x∗k+1 = fk(x∗k, u
∗
k)

Assumption: infimum of g`(x
∗
` , u`) + V`+1(f`(x

∗
` , u`)) is

achieved at some point uk ∈ UK .

if this is not the case, then this procedure fails.

When the infimum is achieved at multiple points, any one can
be used in the equation.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Open-Loop Optimization

Step 3: Finally, the optimal OL policy γOL is given by

γOL
1 (x1) := u∗1, γOL

2 (x1) := u∗2, . . . , γOL
K (x1) := u∗K ,

Observation: All the x∗k and u∗k in Step 2 are precomputed
and depend solely on the initial state x1.

Thus, γOL is indeed an OL policy.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

State-Feedback Optimization

Suppose we use the optimal OL policy γOL defined in Step 3,
which selects the actions

uk = γOL
k (x1) := u∗k, ∀k ∈ {1, 2, . . . ,K}

In this case, the precomputed states x∗k defined in Step 2 match
precisely the states xk that would be measured during the game.

Therefore, we would get the same minimum value V1(x1) for the
cost J , if we were using a state-FB policy γFB defined by

γFB
k (xk) := arg min

uk∈UK

(
gk(xk, uk) + Vk+1(fk(xk, uk))

)
︸ ︷︷ ︸
computed using the measured state xK

, ∀k ∈ {1, 2, . . . ,K}

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

State-Feedback Optimization

When all the gk(xk, uk) + Vk+1(fk(xk, uk)) have a minimum for
some uk ∈ UK , this state-FB policy γFB can do as well as the
optimal OL policy γOL.

Since it is not possible to obtain a value for the cost J lower
than V1(x1), we conclude that γFBk (xk) is an optimal FB policy.

Notation 5 (Time-consistent policy).

A state-FB policy γFBk (xk) that minimizes the cost-to-go from
current state xk at time k is said to be time consistent.

There may be policies γ̄FB that still achieve a cost as low as
V1(x1), but are not time consistent because γ̄FBk (xk) may not
achieve the minimum in γFBk (xk) for every state xk.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

State-Feedback Optimization

Why? it is irrelevant for a policy to achieve the minimum in
γFBk (xk) for states xk never reached through an optimal path.

Time-consistent policies are robust

If due to an unexpected event the state at some time k is taken
to a point other than

xk+1 6= fk(xk, uk)

then a time-consistent policy is still optimal in minimizing the
cost-to-go from the stage k + 1 forward.

OL policies are not robust because they rely on precomputed
states and cannot react to unexpected events.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

State-Feedback Optimization

Theorem 15.1. Consider the sequence of functions
V1(x), V2(x), . . . , VK+1(x) uniquely defined by

Vk(x) =

{
0 k = K + 1

infuk∈Uk

(
gk(x, uk) + Vk+1(fk(x, u`))

)
k ∈ {1, 2, . . . ,K},

∀x ∈ X . Then Vk(x) is equal to the cost-to-go, and if the
infimum is always achieved at some point in Uk, we have that:

1. For any initial state x1, an optimal OL policy γOL is

γOL(x1) := u∗k, ∀k ∈ {1, 2, . . . ,K},
with u∗k obtained from solving

x∗1 = x1, u
∗
k = arg min

uk∈UK

(
gk(x∗k, uk) + Vk+1(fk(x∗k, uk))

)
︸ ︷︷ ︸

computed using the precomputed states x∗k

, x∗k+1 = fk(x∗k, u
∗
k)

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

State-Feedback Optimization

Note. In an OL setting, both x∗k and u∗k, ∀k ∈ {1, 2, . . . ,K} are
precomputed before the game starts.

2. An optimal (time-consistent) state-FB policy γFB is

γFB
k (xk) := arg min

uk∈UK

(
gk(xk, uk) + Vk+1(fk(xk, uk))

)
︸ ︷︷ ︸
computed using the measured state xK

, ∀k ∈ {1, 2, . . . ,K}

Either of the above optimal policies leads to an optimal cost
equal to V1(x1).

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

State-Feedback Optimization

Proof of Theorem 15.1.

Let u∗k and x∗k, ∀k ∈ {1, 2, . . . ,K} be a trajectory arising from
the OL or the state-FB policies.

Let ūk and x̄k, ∀k ∈ {1, 2, . . . ,K} be another (arbitrary)
trajectory.

To prove optimality, show that the latter trajectory cannot lead
to a cost lower than the former.

Since Vk(x) satisfies the conditions in Theorem 15.1, and u∗k
achieves the infimum in Vk(x), for every k ∈ {1, 2, . . . ,K}

Vk(x∗k) = inf
uk∈Uk

(
(gk(x∗k, uk) + Vk+1(fk(x∗k, uk))

)
= gk(x∗k, u

∗
k) + Vk+1(fk(x∗k, u

∗
k)

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

State-Feedback Optimization

Since ūk does not necessarily achieve the infimum, we have

Vk(x̄k) = inf
uk∈Uk

(
(gk(x̄k, uk) + Vk+1(fk(x̄k, uk))

)
≤ gk(x̄k, ūk) + Vk+1(fk(x̄k, ūk))

Summing both sides of Vk(x∗k) from k = 1 to k = K, we
conclude

K∑
k=1

Vk(x∗k) =

K∑
k=1

gk(x∗k, u
∗
k) +

K∑
k=1

Vk+1

(
fk(x∗k, u

∗
k)︸ ︷︷ ︸

x∗k+1

)

⇔
K∑

k=1

Vk(x∗k)−
K∑

k=1

Vk+1(x∗k+1) =

K∑
k=1

gk(x∗k, u
∗
k)

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

State-Feedback Optimization

Since
K∑

k=1

Vk(x∗k)−
K∑

k=1

Vk+1(x∗k+1) = V1(x1)− VK+1(x∗K+1) = V1(x1)

We conclude that

V1(x1) =

K∑
k=1

gk(x∗k, u
∗
k)

Now summing both sides of Vk(x̄k) from k = 1 to k = K

K∑
k=1

Vk(x̄k) ≤
K∑

k=1

gk(x̄k, ūk) +

K∑
k=1

Vk+1

(
fk(x̄k, ūk)︸ ︷︷ ︸

x̄k+1

)

⇔
K∑

k=1

Vk(x̄k)−
K∑

k=1

Vk+1(x̄k+1) ≤
K∑

k=1

gk(x̄k, ūk)

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

State-Feedback Optimization

We conclude that

V1(x1) ≤
K∑

k=1

gk(x̄k, ūk)

from which we obtain

V1(x1) =

K∑
k=1

gk(x∗k, u
∗
k) ≤

K∑
k=1

gk(x̄k, ūk)

Two conclusions can be drawn from this equation

1. The signal ūk does not lead to a cost that is smaller than
that of u∗k.

2. V1(x1) is equal to the optimal cost obtained with u∗k.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

State-Feedback Optimization

If we had carried out the above proof on an interval
{`, `+ 1, . . . ,K} with initial state x` = x, we would have
concluded: V`(x) is the (optimal) value of the cost-to-go from
state x at time `.

Note 13. In the proof of Theorem 15.1 we showed that it is
not possible to achieve a cost lower than V1(x1), regardless of
the information structure.

This is because the signal ūk considered could have been
generated by a policy using any information structure and we
showed that ūk cannot lead to a cost smaller than V1(x1).

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Computational Complexity

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Computational Complexity

For large state-spaces X , the computational effort needed to
compute the cost-to-go at all stages can be very large.

Question: Is it worth using dynamic programming,
instead of doing an exhaustive search?

to decide which option is best, estimate the computation
involved in exploring each option.

Assumption: finite state-spaces and finite action spaces.

Exhaustive Search. Suppose a game has K stages. At the
stage ` the number of actions available to the player is |U`|.
An exhaustive search over all possible selections of actions
requires comparing the costs associated with as many options as

|U1| × |U2| × · · · × |UK |
L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Computational Complexity

Dynamic Programming. At a particular stage ` and for a
specific value of the state x, computing the cost-to-go V`(x)
requires comparing all the actions available, which requires |U`|
comparisons.

This has to be done for every state x and for every stage
` ∈ {1, 2, . . . ,K}. The total number of comparisons is equal to

|U1| × |X1|+ |U2| × |X2|+ · · ·+ |UK | × |XK |

where |X`| denotes the number of possible states at the stage `.

Dynamic Programming can result in significant savings
provided that the size of the state space is small when
compared to Exhaustive Search.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Computational Complexity

Example 15.1 (Tic-Tac-Toe).

Consider a (silly) version of the Tic-Tac-Toe game in which the
same player places all the marks.

An Exhaustive Search among all possible ways to play would
have to consider

9 possible ways to place the first ×
8 possible ways to place the subsequent ◦
7 possible ways to to place the first ×
etc.,

leading to a total of

9! = 9× 8× · × 2× 1 = 362880

distinct options that must be compared.
L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Computational Complexity

For Dynamic Programming, the total number of
comparisons needed turns out to be about 19 times smaller

In larger games, the difference between the two approaches is
even more spectacular. This happens because many
different sequences of actions collapse to the same state.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Solving Finite One-Player Games with
MATLAB

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Solving Finite One-Player Games with MATLAB

For games with finite state spaces and finite action spaces, the
backwards iteration

VK+1(x) = 0, V`(x) inf
u`∈U`

(
g`(x, u`) + V`+1(f`(x, u`))

)
, ∀x ∈ X

can be implemented very efficiently in MATLAB R©.

Enumerate all states so that the state-space can be viewed as

X := {1, 2, . . . , nX }

Enumerate all actions so that the action space can be viewed as

U := {1, 2, . . . , nU}

Assume that all states can occur at every stage and that all
actions are also available at every stage.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Solving Finite One-Player Games with MATLAB

Each function fk(x, u) and gk(x, u) that define the game
dynamics and the stage-cost, can be represented by an nX × nU
matrix with one row per state, one column per action.

Each cost-to-go Vk(x) can be represented by an nX × 1 column
vector with one row per state.

Construct the following variables within MATLAB R©

F : a cell-array with K elements, each equal to an nX × nU
matrix so that F{k} represents the game dynamics function
fk(x, u), ∀x ∈ X , u ∈ U , k ∈ {1, 2, . . . ,K}.

Specifically, the entry F{k}(i,j) of the matrix F{k} is the state
fk(i, j).

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Solving Finite One-Player Games with MATLAB

G : a cell-array with K elements, each equal to an nX × nU
matrix so that G{k} represents the stage-cost function gk(x, u),
∀x ∈ X , u ∈ U , k ∈ {1, 2, . . . ,K}.
Specifically, the entry G{k}(i,j) of the matrix G{k} is the
per-stage cost gk(i, j).

Construct the cost-to-go Vk(x) using the MATLAB R© code:

V{K+1} = zeros(size(G{K},1),1);
for k = K:-1:1

V{k} = min(G{k}+V{k+1}(F{k}),[],2);
end

[],2 in the min function: minimization performed along the
second dimension of the matrix (i.e., along the columns).

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Solving Finite One-Player Games with MATLAB

Running this code, the following variable is created:

V : a cell-array with K + 1 elements, each equal to an nX × 1
column vector so that V{k} represents the cost-to-go Vk(x),
∀x ∈ X , k ∈ {1, 2, . . . ,K}.
Specifically, the entry V{k}(i) of the vector V{k} is the
cost-to-go Vk(i) from state i at stage k.

For a given state x at stage k, the optimal action u given by

γFB
k (xk) := arg min

uk∈UK

(
gk(xk, uk) + Vk+1(fk(xk, uk))

)
︸ ︷︷ ︸
computed using the measured state xK

, ∀k ∈ {1, 2, . . . ,K}

can be obtained using

[∼,u] = min(G{k}(x,:)+V{k+1}(F{k}(x,:))’,[],2);
L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

Discrete-time linear quadratic one-player games are
characterized by linear dynamics of the form

xk+1 = Axk +Buk︸ ︷︷ ︸
fk(xk,uk)

, x ∈ Rn, u ∈ Rn, k ∈ {1, 2, . . . ,K}

and a stage-additive quadratic cost of the form

J :=

K∑
k=1

(
‖yk‖2 + uk

′Ruk︸ ︷︷ ︸
gk(xk,uk)

)
=

K∑
k=1

(
xk
′C ′Cxk + uk

′Ruk︸ ︷︷ ︸
gk(xk,uk)

)
where

yk = Cxk, ∀k ∈ {1, 2, . . . ,K}

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

The cost function

J :=

K∑
k=1

(
‖yk‖2 + uk

′Ruk︸ ︷︷ ︸
gk(xk,uk)

)
=

K∑
k=1

(
xk
′C ′Cxk + uk

′Ruk︸ ︷︷ ︸
gk(xk,uk)

)

captures scenarios in which the (only) player wants to make the
yk, k ∈ {1, 2, . . . ,K} small without spending much effort in
their action uk.

Symmetric positive definite matrix R: a conversion factor that
maps units of uk into units of yk.

Theorem 15.1 can be used to compute optimal policies for
this game and leads to the following result.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

Corollary 15.1. Suppose we define the matrices Pk according
to the (backwards) recursion:

PK+1 = 0

Pk = C ′C +A′Pk+1A−A′Pk+1B(R+B′Pk+1B)−1B′Pk+1A

∀k ∈ {1, 2, . . . ,K}, and that

R+B′Pk+1B ≥ 0, ∀k ∈ {1, 2, . . . ,K}
Then the state-FB policy

γFB
k (xk) = −(R+B′Pk+1B)−1B′Pk+1A, ∀k ∈ {1, 2, . . . ,K}

is an optimal (time-consistent) state-FB policy for the linear
quadratic (LQ) one-player game, leading to an optimal cost
equal to x1P1x1.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

Notation: The equation

PK+1 = 0

Pk = C ′C +A′Pk+1A−A′Pk+1B(R+B′Pk+1B)−1B′Pk+1A

∀k ∈ {1, 2, . . . ,K}, is called a difference Riccati equation.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

15.1. Prove Corollary 15.1.

Hint: Try to find a solution to

Vk(x) =

{
0 k = K + 1

infuk∈Uk

(
gk(x, uk) + Vk+1(fk(x, u`))

)
k ∈ {1, 2, . . . ,K},

∀x ∈ X , of the form Vk(x) = x′Pkx, ∀x ∈ Rn,
k ∈ {1, 2, . . . ,K + 1} for appropriately selected symmetric n× n
matrices Pk.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

Solution to Exercise 15.1. For this game, Vk(x) is given by

Vk(x) =

{
0 k = K + 1

minuk∈Rnu

(
x′C′Cx+ u′kRuk + Vk+1(Ax+Buk)

)
k ∈ {1, 2, . . . ,K}

∀x ∈ Rn. Inspired by the quadratic form of the per-stage cost,
we will try to find a solution to Vk(x) of the form

Vk(x) = x′Pkx, ∀x ∈ Rn, k ∈ {1, 2, . . . ,K + 1}

for appropriately selected symmetric n× n matrices Pk. For
Vk(x) to hold, we need to have PK+1 = 0 and

x′Pkx = min
uk∈Rnu

(
x′C′Cx+ uk

′Ruk + (Ax+Buk)
′Pk+1(Ax+Buk)

)
= min

uk∈Rnu

(
x′(C′C +A′Pk+1A)x+ uk

′(R+B′Pk+1B)uk + 2x′A′Pk+1Buk

)
∀x ∈ Rn, k ∈ {1, 2, . . . ,K}.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

Since the function to optimize is quadratic, to compute the
minimum in x′Pkx we simply need to make the appropriate
gradient equal to zero:

∂

∂uk

(
x′(C′C +A′Pk+1A)x+ uk

′(R+B′Pk+1B)uk + 2x′A′Pk+1Buk

)
= 0

⇔ 2uk
′(R+B′Pk+1B) + 2x′A′Pk+1Buk = 0

⇔ uk = −(R+B′Pk+1B)−1B′Pk+1Ax

Therefore

min
uk∈Rnu

(
x′(C′C +A′Pk+1A)x+ uk

′(R+B′Pk+1B)uk + 2x′A′Pk+1Buk︸ ︷︷ ︸
uk=−(R+B′Pk+1B)−1B′Pk+1Ax

)
= x′(C′C +A′Pk+1A−A′Pk+1B(R+B′Pk+1B)−1B′Pk+1A)x

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

This means that x′Pkx is of the form

x′Pkx = x′(C ′C +A′Pk+1A−A′Pk+1B(R+B′Pk+1B)−1B′Pk+1A)x

which holds in view of the difference Riccati equation.

Corollary 15.1 then follows directly from Theorem 15.1,
since we have found a sequence of functions
V1(x), V2(x), . . . , VK+1(x) that satisfies Vk(x) for which the
infimum is always achieved at the point uk given by making the
appropriate gradient equal to zero.

Note. The value for the minimum will provide the optimal
policy.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

One-Player Discrete-Time Games Discrete-Time Cost-To-Go Discrete-Time Dynamic Programming Computational Complexity Solving Finite One-Player Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

End of Lecture

15 - One-Player Dynamic Games

Questions?

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 15 - One-Player Dynamic Games

	One-Player Discrete-Time Games
	Discrete-Time Cost-To-Go
	Discrete-Time Dynamic Programming
	Computational Complexity
	Solving Finite One-Player Games with MATLAB
	Linear Quadratic Dynamic Games
	Practice Exercise

