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One-Player Continuous-Time Differential
Games
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One-Player Continuous-Time Differential Games

Solution methods for the optimal control of a
continuous-time dynamical systems

One-player continuous-time differential game with dynamics

ẋ(t)︸︷︷︸
state

derivative

= f︸︷︷︸
game

dynamics

(
t︸︷︷︸

time

, x(t)︸︷︷︸
current
state

, u(t)︸︷︷︸
P1’s action
at time t

)
∀t ∈ [0, T ]

with state x(t) ∈ Rn initialized at a given x(0) = x0.

For every time t ∈ [0, T ], the action u(t) is required to belong to
a given action space U .
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One-Player Discrete-Time Games

Assume finite horizon (T <∞) integral costs of the form

J :=

∫ T

0
g(t, x(t), u(t))dt︸ ︷︷ ︸

cost along trajectory

+ q(x(T ))︸ ︷︷ ︸
final cost

that the (only) player wants to minimize using either:

Open-Loop (OL) policy

u(t) = γOL
k (t, x0), ∀t ∈ [0, T ]

State-Feedback (FB) policy

u(t) = γFB
k (t, x(t)), ∀t ∈ [0, T ]
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Continuous-Time Cost-To-Go
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Continuous-Time Cost-To-Go

Player is at some state x at time τ

player wants to estimate the cost, if playing optimally
from this point on, so as to minimize costs incurred from
this point forwards until the end of the game.

Cost-to-Go from state x at time τ

V (τ, xτ ) := inf
u(t)∈U ,∀t∈[τ,T ]

∫ T

τ
g(t, x(t), u(t))dt+ q(x(T ))

with the state x(t), t ∈ [τ, T ] initialized at x(τ) = xτ

and satisfying the dynamics

ẋ(t) = f(t, x(t), u(t)) ∀t ∈ [τ, T ]
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Continuous-Time Cost-To-Go

Note: The cost-to-go is a function of x and τ .
Often called the value function of the game/optimization.

Computing the cost-to-go V (0, x0) from the initial state x0 at
time τ = 0 essentially amounts to minimizing the cost

J :=

∫ T

0
g(t, x(t), u(t))dt︸ ︷︷ ︸

cost along trajectory

+ q(x(T ))︸ ︷︷ ︸
final cost

for the dynamics

ẋ(t)︸︷︷︸
state

derivative

= f︸︷︷︸
game

dynamics

(
t︸︷︷︸

time

, x(t)︸︷︷︸
current
state

, u(t)︸︷︷︸
P1’s action
at time t

)
∀t ∈ [0, T ]

This leads to two important conclusions.
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Continuous-Time Cost-To-Go

Conclusion 1. Regardless of the information structure
considered (OL, FB, other), it is not possible to obtain a cost

J :=

∫ T

0
g(t, x(t), u(t))dt︸ ︷︷ ︸

cost along trajectory

+ q(x(T ))︸ ︷︷ ︸
final cost

lower than V (0, x0).

This is because in the minimization

V (τ, xτ ) := inf
u(t)∈U ,∀t∈[τ,T ]

∫ T

τ
g(t, x(t), u(t))dt+ q(x(T ))

we place no constraints on what information may or may not be
available to compute the optimal u(t), ∀t ∈ [τ, T ].
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Continuous-Time Cost-To-Go

Conclusion 2. If the infimum in the minimization

V (τ, xτ ) := inf
u(t)∈U ,∀t∈[τ,T ]

∫ T

τ
g(t, x(t), u(t))dt+ q(x(T ))

is achieved for a specific signal

u∗(t) ∈ U , t ∈ [τ, T ]

computed before the game starts just with knowledge of x0,
then this action signal provides an optimal OL policy

γOL
1 (t, x0) := u∗(t), ∀t ∈ [τ, T ]

This would not be the case, e.g., if there were stochastic events
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Continuous-Time Dynamic Programming
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Continuous-Time Dynamic Programming

DP is a computationally efficient recursive technique

useful to compute the cost-to-go

For the final time T , the cost-to-go V (T, xT ) is simply

V (T, xT ) = q(x(T )) = q(xT )

because for t = τ the integral term in

V (τ, xτ ) := inf
u(t)∈U ,∀t∈[τ,T ]

∫ T

τ
g(t, x(t), u(t))dt+ q(x(T ))

disappears and the game starts t(and ends) precisely at
x(T ) = xT
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Continuous-Time Dynamic Programming

Consider now some time τ < T . Pick some small positive
constant h so that τ + h is still smaller than T . Then

V (τ, xτ ) = inf
u(t)∈U,∀t∈[τ,T ]

∫ T

τ

g(t, x(t), u(t))dt+ q(x(T ))

= inf
u(t)∈U,∀t∈[τ,T ]

∫ τ+h

τ

g(t, x(t), u(t))dt︸ ︷︷ ︸
independent of u(t),t∈[τ+h,T ]

+

∫ T

τ+h

g(t, x(t), u(t))dt+ q(x(T ))︸ ︷︷ ︸
depends on all u(t),t∈[τ,T ]

= inf
u(t)∈U,∀t∈[τ,τ+h)

(∫ τ+h

τ

g(t, x(t), u(t))dt

+ inf
u(t)∈U,∀t∈[τ+h,T ]

∫ T

τ+h

g(t, x(t), u(t))dt+ q(x(T ))
)
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Continuous-Time Dynamic Programming

Observation: inner infimum is the cost-to-go from the state
x(τ + h) at time τ + h. Then, we can re-write these equations
compactly as

V (τ, xτ ) = inf
u(t)∈U,∀t∈[τ,τ+h]

(∫ τ+h

τ

g(t, x(t), u(t))dt+ V (τ + h, x(τ + h))
)

Subtracting V (τ, xτ ) = V (τ, x(τ)) from both sides and dividing
both sides by h > 0, we can re-write the equation as

0 = inf
u(t)∈U,∀t∈[τ,τ+h)

( 1

h

∫ τ+h

τ

g(t, x(t), u(t))dt+
V (τ + h, x(τ + h))− V (τ, x(τ))

h

)
Since LHS must be equal to zero for every h ∈ (0, T − τ), the
limit of the RHS as h→ 0 must also be equal to zero.
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Continuous-Time Dynamic Programming

Optimistic assumption: the limit of the infimum is the same
as the infimum of the limit and also that all limits exist. Then,
we can use the equalities

lim
h→0

1

h

∫ τ+h

τ

g(t, x(t), u(t))dt = g(τ, x(τ), u(τ))

lim
h→0

V (τ + h, x(τ + h))− V (τ, x(τ))

h

=
dV (τ, x(τ))

dτ
=
∂V (τ, x(τ))

∂τ
+
∂V (τ, x(τ))

∂x
f(τ, x(τ), u(τ))

to transform the previous equation into the so-called
Hamilton-Jacobi-Bellman (HJB) equation

0 = inf
u∈U

(
g(τ, x(τ), u(τ)) +

∂V (τ, x)

∂τ
+
∂V (τ, x)

∂x
f(τ, x, u)

)
, ∀τ ∈ [0, T ], x ∈ Rn

HJB equation is useful to compute the cost-to-go.
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Continuous-Time Dynamic Programming

Note. The infimum in

0 = inf
u(t)∈U,∀t∈[τ,τ+h)

( 1

h

∫ τ+h

τ

g(t, x(t), u(t))dt+
V (τ + h, x(τ + h))− V (τ, x(τ))

h

)

is taken over all the values of the signal u(t) in the interval
t ∈ [τ + τ + h), which is the subject of calculus of variations.

However, in the HJB equation

0 = inf
u∈U

(
g(τ, x(τ), u(τ)) +

∂V (τ, x)

∂τ
+
∂V (τ, x)

∂x
f(τ, x, u)

)
, ∀τ ∈ [0, T ], x ∈ Rn

the infimum is simply taken over the set U and can generally be
solved using standard calculus.
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Continuous-Time Dynamic Programming

Theorem 16.1 (Hamilton-Jacobi-Bellman).

Any continuously differentiable function V (τ, x) that satisfies
the HJB equation

0 = inf
u∈U

(
g(τ, x(τ), u(τ)) +

∂V (τ, x)

∂τ
+
∂V (τ, x)

∂x
f(τ, x, u)

)
, ∀τ ∈ [0, T ], x ∈ Rn

with

V (T, x) = q(x), ∀x ∈ RN

is equal to the cost-to-go V (τ, x).

In addition, if the infimum in the HJB equation is always
achieved at some point in U , we have the following.
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Continuous-Time Dynamic Programming

1. For any given x0, an optimal OL policy γOL is given by

γOL(t, x0) := u∗(t), ∀t ∈ [0, T ]

with u∗(t) obtained from solving

u∗(t) = arg min
u∈U

g(t, x∗(t), u) +
∂V (t, x∗(t))

∂x
f(t, x∗(t), u)

ẋ∗(t) = f(t, x∗(t), u∗(t)), ∀t ∈ [0, T ], x∗(0) = x0

Note. In an OL setting both x∗(t) and u∗(t), t ∈ [0, T ] are
precomputed before the game starts.
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Continuous-Time Dynamic Programming

2. An optimal (time-consistent) state-FB policy γFB is given by

γFB(t, xt) := arg min
u∈U

g(t, x(t), u) +
∂V (t, x(t))

∂x
f(t, x(t), u), ∀t ∈ [0, T ]

Either of the above optimal policies leads to an optimal cost
equal to V (0, x0)

Note 15. OL and state-FB information structures are
optimal, in the sense that it is not possible to achieve a cost
lower than V (0, x0), regardless of the information structure.
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Continuous-Time Dynamic Programming

Note 14 (Hamilton-Jacobi-Bellman equation).

Since ∂V (τ,x)
∂x in

0 = inf
u∈U

(
g(τ, x(τ), u(τ)) +

∂V (τ, x)

∂τ
+
∂V (τ, x)

∂x
f(τ, x, u)

)
, ∀τ ∈ [0, T ], x ∈ Rn

does not depend of u, we remove this term from inside the
infimum. This leads to the common form for the HJB:

−∂V (τ, x)

∂x
= inf

u∈U

(
g(τ, x, u) +

∂V (τ, x)

∂x
f(τ, x, u)

)
This form highlights the fact that the HJB is a partial
differential equation (PDE) and we can view

V (T, x) = q(x), ∀x ∈ RN

as a boundary condition for this PDE.
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Continuous-Time Dynamic Programming

When we find a continuously differentiable solution to this PDE
that satisfies the boundary condition, we automatically obtain
the cost-to-go. Unfortunately, solving a PDE is often difficult,
and many times

0 = inf
u∈U

(
g(τ, x(τ), u(τ)) +

∂V (τ, x)

∂τ
+
∂V (τ, x)

∂x
f(τ, x, u)

)
, ∀τ ∈ [0, T ], x ∈ Rn

does not have continuously differentiable solutions.

Note The lack of differentiability of the solution to this
equation is not an insurmountable difficulty.

There are methods to overcome this technical difficulty by
making sense of what it means for a non-differentiable function
to be a solution o this equation.
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Continuous-Time Dynamic Programming

Proof of Theorem 16.1.

Let u∗(t) and x∗(t), ∀t ∈ [0, T ] be a trajectory arising from
either the OL or the state-FB policies.

note that both policies lead to the same trajectory.

Let ū(t) and x̄(t), ∀t ∈ [0, T ] be another (arbitrary) trajectory.

To prove optimality, show that the latter trajectory cannot lead
to a cost lower than the former.

Since V (τ, x) satisfies the HJB equation, and u∗(t) achieves the
infimum in the HJB equation, for every t ∈ [0, T ], we have that

0 = inf
u∈U

g(t, x∗(t), u) +
∂V (t, x∗(t))

∂τ
+
∂V (t, x∗(t))

∂x
f(t, x∗(t), u)

= g(t, x∗(t), u∗(t)) +
∂V (t, x∗(t))

∂τ
+
∂V (t, x∗(t))

∂x
f(t, x∗(t), u∗(t))
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Continuous-Time Dynamic Programming

However, since ū(t) does not necessarily achieve the infimum,
we have that

0 = inf
u∈U

g(t, x̄(t), u) +
∂V (t, x̄(t))

∂τ
+
∂V (t, x̄(t))

∂x
f(t, x̄(t), u)

≤ g(t, x̄(t), ū(t)) +
∂V (t, x̄(t))

∂τ
+
∂V (t, x̄(t))

∂x
f(t, x̄(t), ū(t))

Integrating both sides of this and the previous eq. over the
interval [0, T ] we conclude

0 =

∫ T

0

(
g(t, x∗(t), u∗(t)) +

∂V (t, x∗(t))

∂τ
+
∂V (t, x∗(t))

∂x
f(t, x∗(t), u∗(t))︸ ︷︷ ︸

dV (t,x∗(t))
dt

)
dt

≤
∫ T

0

(
g(t, x̄(t), ū(t)) +

∂V (t, x̄(t))

∂τ
+
∂V (t, x̄(t))

∂x
f(t, x̄(t), ū(t))︸ ︷︷ ︸

dV (t,x̄(t))
dt

)
dt
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Continuous-Time Dynamic Programming

From which we obtain

0 =

∫ T

0

g(t, x∗(t), u∗(t))dt+ V (T, x∗(T ))− V (0, x0)

≤
∫ T

0

g(t, x̄(t), ū(t))dt+ V (T, x̄(T ))− V (0, x0)

Using

V (T, x) = q(x), ∀x ∈ Rn

and adding V (0, x0) to all terms, one concludes that

V (0, x0) =

∫ T

0

g(t, x∗(t), u∗(t))dt+ q(x∗(T )) ≤
∫ T

0

g(t, x̄(t), ū(t))dt+ q(x̄(T ))
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Continuous-Time Dynamic Programming

Two conclusions can be drawn:
1 signal ū(t) does not lead to a cost smaller than that of u∗(t)
2 V (0, x0) is equal to the optimal cost obtained with u∗(t)

If we had carried out the above proof on an interval [τ, T ] with
initial state x(τ) = x, we would have concluded that V (τ, x) is
the (optimal) value of the cost-to-go from state x at time τ .

Note 15. In the proofs of Theorems 16.1 (and later in the
proof of Theorem 16.2) we show that it is not possible to
achieve a cost lower than V (0, x0), regardless of the information
structure.

This is because the signal ū(t) considered could have been
generated by a policy using any information structure and we
showed ū(t) cannot lead to a cost smaller than V (0, x0).

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 16 - One-Player Differential Games



One-Player Continuous-Time Differential Games Continuous-Time Cost-To-Go Continuous-Time Dynamic Programming Linear Quadratic Dynamic Games Differential Games with Variable Termination Time Practice Exercise

Linear Quadratic Dynamic Games

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 16 - One-Player Differential Games



One-Player Continuous-Time Differential Games Continuous-Time Cost-To-Go Continuous-Time Dynamic Programming Linear Quadratic Dynamic Games Differential Games with Variable Termination Time Practice Exercise

Linear Quadratic Dynamic Games

Continuous-time linear quadratic one-player games are
characterized by linear dynamics like

ẋ = Ax(t) +Bu(t)︸ ︷︷ ︸
f(t,x(t),u(t))

, x ∈ Rn, u ∈ Rn)u, t ∈ [0, T ]

and an integral quadratic cost of the form

J :=

∫ T

0
(||y(t)||2 + u(t)′Ru(t))︸ ︷︷ ︸

g(t,x(t),u(t))

dt+ x′(T )PTx(T )︸ ︷︷ ︸
q(x(T ))

where

y(t) = Cx(t), ∀t ∈ [0, T ].
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Linear Quadratic Dynamic Games

Cost function J captures scenarios in which the (only) player
wants to make y(t) small over the interval [0, T ] without
spending much effort in the action u(t).

R : symmetric positive definite matrix

conversion factor that maps units of u(t) into units of y(t).

The HJB equation for this game is then

−∂V (t, x)

∂t
= min

u∈Rnu

(
x′C ′Cx+ u′Ru+

∂V (t, x)

∂x
(Ax+Bu)

)
x ∈ Rn, t ∈ [0, T ], with boundary condition

V (T, x) = x′PTx, ∀x ∈ Rn
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Linear Quadratic Dynamic Games

Inspired by the boundary condition V (T, x), we will try to find
a solution to the HJB of the form

V (t, x) = x′P (t)x, ∀x ∈ Rn, t ∈ [0, T ]

for some selected symmetric n× n matrix P (t).

For V (T, x) to hold, we need P (T ) = PT .

For the HJB to hold, we need

−x′Ṗ (t)x = min
u∈Rnu

(
x′C ′Cx+ u′Ru+ 2x′P (t)(Ax+Bu)

)
∀x ∈ Rn, t ∈ [0, T ].
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Linear Quadratic Dynamic Games

Function to optimize is quadratic:

to compute the minimum in previous eq., make the
appropriate gradient equal to zero

∂

∂u

(
x′C ′Cx+ u′Ru+ 2x′P (Ax+Bu)

)
= 0

⇔ 2u′R+ 2x′PB = 0⇔ u = −R−1B′Px

The critical point obtained by setting ∂(·)
∂u is a minimum

because R > 0

the value for the minimum will provide the optimal policy.
Therefore

−x′Ṗ (t)x = min
u∈Rnu

(
x′C ′Cx+ u′Ru+ 2x′P (t)(Ax+Bu)︸ ︷︷ ︸

u=−R−1B′Px

)
= x′(PA+A′P + C ′C − PBR−1B′P )x
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Linear Quadratic Dynamic Games

Note. Since P is symmetric, we wrote

2x′PAx as x′(PA+A′P )x

From the previous equation we have that

−x′Ṗ (t)x = x′(PA+A′P + C ′C − PBR−1B′P )x

∀x ∈ Rn, t ∈ [0, T ], which holds provided that

−Ṗ (t) = PA+A′P + C ′C − PBR−1B′P, ∀t ∈ [0, T ]

Theorem 16.1 can then be used to compute the optimal
policies for this game.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 16 - One-Player Differential Games



One-Player Continuous-Time Differential Games Continuous-Time Cost-To-Go Continuous-Time Dynamic Programming Linear Quadratic Dynamic Games Differential Games with Variable Termination Time Practice Exercise

Linear Quadratic Dynamic Games

Corollary 16.1. Suppose there exists a symmetric solution to
the matrix-valued ODE

−Ṗ (t) = PA+A′P + C ′C − PBR−1B′P, ∀t ∈ [0, T ]

with final condition P (T ) = PT .

Note: The function P (t) could be found by numerically solving
the (differential Ricatti Equation) matrix-valued ODE
backwards in time.

Then the state-FB policy

γ∗(t, x) = −R−1B′Px, ∀x ∈ Rn, t ∈ [0, T ]

is an optimal state-FB policy, leading to an optimal cost
x′0P (0)x0.
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Differential Games with Variable Termination
Time
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Differential Games with Variable Termination Time

Consider a one-player continuous-time differential game with
dynamics

ẋ(t) = f(t, x(t), u(t)), x(t) ∈ Rn, u(t) ∈ U ,≥ 0

initialized at a given x(0) = x0, but with an integral cost with
variable horizon

J :=

∫ Tend

0
g(t, x(t), u(t))dt︸ ︷︷ ︸

cost along the trajectory

+ q(Tend, x(Tend)︸ ︷︷ ︸
final cost

where Tend is the first time at which state x(t) enters a closed
set Xend ⊂ Rn or Tend = +∞ in case x(t) never enters Xend.

Xend : set of states at which the game terminates. Evolution of
x(t) is irrelevant after this time. (Game Over States)
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Differential Games with Variable Termination Time

Cost-to-go (value function) from state x at time τ is

V (τ, x) := inf
u(t)∈U ,∀t≥τ

∫ Tend

τ
g(t, x(t), u(t))dt+ q(Tend, x(Tend)

where the state x(t), t ≥ τ satisfies the dynamics

x(τ) = x, ẋ(t) = f(t, x(t), u(t)), ∀t ≥ τ

Tend : first time at which x(t) enters the closed set Xend.

When we compute V (τ, x) for some x ∈ Xend, we have Tend = τ
and therefore

V (τ, x) = q(τ, x), ∀τ ≥ 0, x ∈ Xend

instead of the boundary condition V (T, x). It turns out that the
HJB equation is still the same.
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Differential Games with Variable Termination Time

Theorem 16.2. A continuously differentiable function V (τ, x)
that satisfies the HJB equation with (a boundary condition)

V (τ, x) = q(τ, x), ∀τ ≥ 0, x ∈ Xend

is equal to the cost-to-go V (τ, x). If the infimum in the HJB is
always achieved at some point in U , we have that:

1. For any given x0, an optimal OL policy γOL is given by

γOL(t, x0) := u∗(t), ∀t ∈ [0, Tend]

with u∗(t) obtained from solving

u∗(t) = arg min
u∈U

g(t, x∗(t), u) +
∂V (t, x∗(t))

∂x
f(t, x∗(t), u)

x∗(t) = f(t, x∗(t), u∗(t)), ∀t ∈ [0, Tend], x∗(0) = 0
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Differential Games with Variable Termination Time

2. An optimal (time-consistent) state-FB policy γFB is given by

γFB(t, xt) := arg min
u∈U

g(t, x(t), u) +
∂V (t, x(t))

∂x
f(t, x(t), u), ∀t ∈ [0, Tend],

Either of the optimal policies γOL or γFB leads to an optimal
cost equal to V (0, x0).

Proof of Theorem 16.2.
Let u∗(t) and x∗(t), ∀t ≥ 0 be a trajectory arising from the OL
or the state-FB policies and let ū∗(t) and x̄∗(t), ∀t ≥ 0 be
another (arbitrary) trajectory.

To prove optimality, show that the latter trajectory cannot lead
to a cost lower than the former.
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Differential Games with Variable Termination Time

As in the proof of Theorem 16.1, V (τ, x) satisfies the HJB
equation, and u∗(t) achieves the infimum in it.

Let T ∗end ∈ [0,∞], and T̄end ∈ [0,∞] denote the times at which
x∗(t) and x̄(t), respectively, enter the set Xend.

Integrating both sides of respective equations over the intervals
[0, Tend∗ ] and [0, T̄end], respectively, we conclude that

0 =

∫ T∗end

0

(
g(t, x∗(t), u∗(t)) +

∂V (t, x∗(t))

∂τ
+
∂V (t, x∗(t))

∂x
f(t, x∗(t), u∗(t))︸ ︷︷ ︸

dV (t,x∗(t))
dt

)
dt

≤
∫ T̄end

0

(
g(t, x̄(t), ū(t)) +

∂V (t, x̄(t))

∂τ
+
∂V (t, x̄(t))

∂x
f(t, x̄(t), ū(t))︸ ︷︷ ︸

dV (t,x̄(t))
dt

)
dt
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Differential Games with Variable Termination Time

From which we obtain

0 =

∫ T∗end

0

g(t, x∗(t), u∗(t))dt+ V (T ∗end, x
∗(T ∗end))− V (0, x0)

≤
∫ T̄∗end

0

g(t, x̄(t), ū(t))dt+ V (T̄end, x̄(T̄end))− V (0, x0)

Using

V (τ, x) = q(τ, x), ∀τ ≥ 0, x ∈ Xend

two conclusions can be drown from here.
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Differential Games with Variable Termination Time

First, the signal ū(t) does not lead to a cost smaller than that
of u∗(t), because∫ T∗end

0

g(t, x∗(t), u∗(t))dt+ q(T ∗end, x
∗(T ∗end))

≤
∫ T̄∗end

0

g(t, x̄(t), ū(t))dt+ q(T̄end, x̄(T̄end))

Second, V (0, x0) is equal to the optimal cost obtained with
u∗(t), because

V (0, x0) =

∫ T ∗end

0
g(t, x∗(t), u∗(t))dt+ q(T ∗end, x

∗(T ∗end))

If we had carried out the proof starting at time τ with initial
state x(τ) = x, we would have concluded that V (τ, x) is the
(optimal) value of the cost-to-go from state x at time τ .
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Practice Exercise
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Practice Exercise

16.1. Prove the following result, which permits the
construction of a state-FB policy based on a function that only
satisfies the HJB equation approximately.

Theorem 16.3. Suppose that there exist constants ε, δ ≥ 0, a
continuously differentiable function V (τ, x) that satisfies∣∣ inf
u∈U

(
g(τ, x, u) +

∂V (τ, x)

∂τ
+
∂V (τ, x)

∂x
f(τ, x, u)

)∣∣ ≤ ε, ∀τ ∈ [0, T ], x ∈ Rn

with
V (T, x) = q(x), ∀x ∈ Rn

and a state-feedback policy γ(·) for which

g(τ, x, u) +
∂V (τ, x)

∂x
f(τ, x, u)

∣∣
u=γ(x)

≤ δ + inf
u∈U

(
g(τ, x, u) +

∂V (τ, x)

∂x
f(τ, x, u)

)
∀τ ∈ [0, T ], x ∈ Rn
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Practice Exercise

Then the policy γ(·) leads to a cost J(γ) that satisfies

J(γ) ≤ J(γ̄) + (2ε+ δ)T

for any other state-FB policy γ̄(·) with cost J(γ̄).

Solution to Exercise 16.1. Proof of Theorem 16.3.

Let u∗(t) and x∗(t), ∀t ∈ [0, T ] be a trajectory arising from the
state-FB policy γ(·).
Let ū(t) and x̄(t), ∀t ∈ [0, T ] be another trajectory, e.g.,
resulting from the state-FB policy γ̄(·) that appears in
J(γ) ≤ J(γ̄) + (2ε+ δ)T .

Since V (τ, x) satisfies the ε condition for x = x∗(t), and γ(·)
satisfies the δ condition for x = x∗(t), and u = γ(x∗(t)) = u∗(t)
satisfies the δ condition, we have the following.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 16 - One-Player Differential Games



One-Player Continuous-Time Differential Games Continuous-Time Cost-To-Go Continuous-Time Dynamic Programming Linear Quadratic Dynamic Games Differential Games with Variable Termination Time Practice Exercise
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ε ≥ inf
u∈U

(
g(t, x∗(t), u) +

∂V (t, x∗(t))

∂t
+
∂V (t, x∗(t))

∂x
f(t, x∗(t), u)

)
≥ −δ + g(t, x∗(t), u∗(t)) +

∂V (t, x∗(t))

∂t
+
∂V (t, x∗(t))

∂x
f(t, x∗(t), u∗(t))

)
On the other hand, using the ε condition for x = x̄(t) and the
fact that ū(t) does not necessarily achieve the infimum, we have

−ε ≤ inf
u∈U

(
g(t, x̄(t), u) +

∂V (t, x̄(t))

∂t
+
∂V (t, x̄(t))

∂x
f(t, x̄(t), u)

)
≥ g(t, x̄(t), ū(t)) +

∂V (t, x̄(t))

∂t
+
∂V (t, x̄(t))

∂x
f(t, x̄(t), ū(t))

)
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Integrating both sides of the previous equations over the
interval [0, T ], we conclude that

(ε+ δ)T ≥
(
g(t, x∗(t), u∗(t) +

∂V (t, x∗(t))

∂t
+
∂V (t, x∗(t))

∂x
f(t, x∗(t), u∗(t)︸ ︷︷ ︸

dV (t,x∗(t))
dt

)
dt

=

∫ T

0

(g(t, x∗(t), u∗(t))dt+ V (T, x∗(T ))− V (0, x0)

and

−εT ≤
(
g(t, x̄(t), ū(t) +

∂V (t, x̄(t))

∂t
+
∂V (t, x̄(t))

∂x
f(t, x̄(t), ū(t)︸ ︷︷ ︸

dV (t,x̄(t))
dt

)
dt

=

∫ T

0

(g(t, x̄(t), ū(t))dt+ V (T, x̄(T ))− V (0, x0)
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Practice Exercise

From which we obtain∫ T

0

g(t, x∗(t), u∗(t))dt+ V (T, x∗(T )) ≤ V (0, x0) + (ε+ δ)T

≤ (2ε+ δ)T +

∫ T

0

g(t, x̄(t), ū(t))dt+ V (T, x̄(T ))

Which proves

J(γ) ≤ J(γ̄) + (2ε+ δ)T
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End of Lecture

16 - One-Player Differential Games

Questions?
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