
Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

COSC-6590/GSCS-6390

Games: Theory and Applications

Lecture 17 - State-Feedback Zero-Sum
Dynamic Games

Luis Rodolfo Garcia Carrillo

School of Engineering and Computing Sciences
Texas A&M University - Corpus Christi, USA

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Table of contents

1 Zero-Sum Dynamic Games in Discrete Time

2 Discrete-Time Dynamic Programming

3 Solving Finite Zero-Sum Games with MATLAB

4 Linear Quadratic Dynamic Games

5 Practice Exercise

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Zero-Sum Dynamic Games in Discrete Time

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Zero-Sum Dynamic Games in Discrete Time

Computation of saddle-point equilibria of zero-sum
discrete-time dynamic games in state-feedback policies

Solution methods for two-player zero-sum dynamic games in
discrete time, which correspond to dynamics of the form

xk+1︸ ︷︷ ︸
entry node at
stage k + 1

= fk︸︷︷︸
“dynamics”
at stage k

(
xk︸︷︷︸

state at
stage k

, uk︸︷︷︸
P1’s action
at stage k

, dk︸︷︷︸
P2’s action
at stage k

)
∀k ∈ {1, . . . ,K}

starting at some initial state x1 in the state space X .

At each time k
P1’s action uk is required to belong to a given action space Uk.
P2’s action dk is required to belong to a given action space Dk.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Zero-Sum Dynamic Games in Discrete Time

Assume finite horizon (K <∞) stage-additive costs of the form

J :=

K∑
k=1

gk(xk, uk)

that P1 wants to minimize and P2 wants to maximize.

Consider a state-FB information structure, which
corresponds to policies of the form

uk = γk(xk), dk = σk(xk), ∀k ∈ {1, 2, . . . ,K}

For a state-FB policy γ for P1 and a state-FB policy σ for P2,
denote by J(γ, σ) the corresponding value of the cost J .

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Zero-Sum Dynamic Games in Discrete Time

Goal: saddle-point pair of equilibrium policies (γ∗, σ∗) for which

J(γ∗, σ) ≤ J(γ∗, σ∗) ≤ J(γ, σ∗), ∀ γ ∈ Γ1, σ ∈ Γ2

where Γ1 and Γ2: sets of all state-FB policies for P1 and P2.

Rewriting the saddle-point equilibrium (SPE) pair as

J(γ∗, σ∗) = min
γ∈Γ1

(γ, σ∗), J(γ∗, σ∗) = max
σ∈Γ2

(γ∗, σ)

we conclude that if σ∗ was known we could obtain γ∗ from the
single-player optimization

minimize over γ ∈ Γ1 the cost J(γ, σ∗) :=

K∑
k=1

gk(xk, uk, σ
∗
k(xk))

subject to the dynamics xk+1 = fk(xk, uk, σ
∗
k(xk))

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Zero-Sum Dynamic Games in Discrete Time

From Module 15:

An optimal state-FB policy γ∗ could be constructed using a
backward iteration to compute the cost-to-go V 1

k (x) for P1 using

V 1
K+1(x) = 0, V 1

k (x) = inf
uk∈Uk

(
gk(x, uk, σ

∗
k(x)) + V 1

k+1(fk(x, uk, σ
∗
k(x)))

)
∀k ∈ {1, 2, . . . ,K}, and then

γ∗k := arg min
uk∈Uk

(
gk(x, uk, σ

∗
k(x)) + Vk+1(fk(x, uk, σ

∗
k(x)))

)
, ∀k ∈ {1, 2, . . . ,K}

Moreover, the minimum J(γ∗, σ∗) is given by V 1
1 (x1).

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Zero-Sum Dynamic Games in Discrete Time

Similarly, if γ∗ was known we could obtain an optimal state-FB
policy σ∗ from the single-player optimization

maximize over σ ∈ Γ2 the reward J(γ∗, σ) :=

K∑
k=1

gk(xk, γ
∗
k(xk), dk)

subject to the dynamics xk+1 = fk(xk, γ
∗
k(xk), dk)

An optimal state-FB policy σ∗ could be constructed using a
backward iteration to compute the cost-to-go V 2

k (x) for P2 using

V 2
K+1(x) = 0, V 2

k (x) = sup
dk∈Dk

(
gk(x, γ∗k(x), dk) + V 2

k+1(fk(x, γ∗k(x), dk))
)

∀k ∈ {1, 2, . . . ,K}, and then

σ∗k := arg max
dk∈Dk

(
gk(x, γ∗k(x), dk) + Vk+1(fk(x, γ∗k(x), dk))

)
, ∀k ∈ {1, 2, . . . ,K}

Moreover, the maximum J(γ∗, σ∗) is given by V 2
1 (x1).

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

Key to finding the saddle-point pair of eq. policies (γ∗, σ∗):

it is possible to construct a pair of state-FB policies for
which the equations V 1

K+1, γ∗k , V 2
K+1, σ∗k all hold.

Consider costs-to-go V 1
K , V 2

K , and state-FB policies γ∗k , σ∗k at the
last stage. For V 1

K+1(x), γ∗k(x), V 2
K+1(x), σ∗k(x) to hold we need

V 1
K(x) = inf

uk∈UK
gK(x, uK , σ

∗
K(x)), γ∗K(x) = arg min

uK∈UK
gK(x, uK , σ

∗
K(x))

V 2
K(x) = sup

dk∈DK

gK(x, γ∗K(x), dK), σ∗K(x) = arg min
dK∈DK

gK(x, γ∗K(x), dK)

which can be re-written equivalently as

V 1
K(x) = gK(x, γ∗K(x), σ∗K) ≤ gK(x, uK , σ

∗
K(x)), ∀uK ∈ UK

V 2
K(x) = gK(x, γ∗K(x), σ∗K) ≥ gK(x, γ∗K(x), dK ,), ∀dK ∈ DK

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

Conclusion: V 1
K(x) = V 2

K(x).
The pair (γ∗K(x), σ∗K(x)) ∈ UK ×DK must be a SPE for the
zero-sum game with outcome

gK(x, uK , dK)

and actions uK ∈ UK for P1 (minimizer) and dK ∈ DK for P2

(maximizer).

Moreover, V 1
K(x) = V 2

K(x) must be the value of this game.

Only possible: if security policies exist, and security levels for
both players are equal to the value of the game, i.e.,

V 1
K(x) = V 2

K(x) = VK(x) : = min
uK∈UK

sup
dK∈DK

gK(x, uK , dK)

= max
dK∈DK

inf
uK∈UK

gK(x, uK , dK)

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

Consider now costs-to-go V 1
K−1, V 2

K−1 and state-FB policies
γ∗K−1, σ∗K−1 at stage K − 1.

For V 1
K−1(x), γ∗K−1(x), V 2

K−1(x), σ∗K−1(x) to hold we need

V 1
K−1(x) = inf

uK−1∈UK−1

(
gK−1(x, uK−1, σ

∗
K−1(x)) + VK(fK−1(x, uK−1, σ

∗
K−1(x)))

)
γ∗K−1(x) : = arg min

uK−1∈UK−1

(
gK−1(x, uK−1, σ

∗
K−1(x)) + VK(fK−1(x, uK−1, σ

∗
K−1(x)))

)
V 2
K−1(x) = sup

dK−1∈DK−1

(
gK−1(x, γ∗K−1(x), dK−1) + VK(fK−1(x, γ∗K−1(x), dK−1))

)
σ∗K−1(x) : = arg min

dK−1∈DK−1

(
gK−1(x, γ∗K−1(x), dK−1) + VK(fK−1(x, γ∗K−1(x), dK−1))

)
We omit the superscripts in V 1

K and V 2
K in the RHS, since we

have already seen that V 1
K(x) = V 2

K(x).
L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

Conclusion: (γ∗K−1(x), σ∗K−1(x)) ∈ UK−1 ×DK−1 must be a
SPE for the zero-sum game with outcome

gK−1(x, uK−1, dK−1) + VK
(
fK−1(x, uK−1, dK−1)

)
and actions uK−1 ∈ UK−1 for P1 (minimizer) and dK−1 ∈ DK−1

for P2 (maximizer).

Moreover, V 1
K−1(x) = V 2

K−1(x) must be precisely equal to the
value of this game.

Continuing this reasoning backwards in time all the way to the
first stage, we obtain the following result.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

Theorem 17.1. Assume we can recursively compute functions
V1(x), V2(x), . . . , VK+1(x), such that ∀x ∈ X , k ∈ {1, 2, . . . ,K}

Vk(x) : = min
uk∈Uk

sup
dk∈Dk

(
gk(x, uk, dk) + VK+1(fk(x, uk, dk))

)
= max

dk∈Dk

inf
uk∈Uk

(
gk(x, uk, dk) + VK+1(fk(x, uk, dk))

)
where VK+1(x) = 0, ∀x ∈ X .

Then the pair (γ∗, σ∗) below is a SPE in state-FB policies:

γ∗(x) : = arg min
uk∈Uk

sup
dk∈Dk

(
gk(x, uk, dk) + VK+1(fk(x, uk, dk))

)
σ∗(x) : = arg max

dk∈Dk

inf
uk∈Uk

(
gk(x, uk, dk) + VK+1(fk(x, uk, dk))

)
∀x ∈ X , k ∈ {1, 2, . . . ,K}. And the value of the game is V1(x1).

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

Attention! Theorem 17.1 provides a sufficient condition for
the existence of NE, but this condition is not necessary.

The two security levels in Vk(x) may not commute for a state x
at some stage k, but there still may be a SPE for the game.

we saw this for games in extensive form.

When the min and max do not commute in Vk(x), and Uk and
Dk are finite, one may want to use a mixed SPE, leading to
behavioral policies

i.e., per-stage randomization.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

Proof of Theorem 17.1.

Since the inf and sup commute in Vk(x) and the definitions of
γ∗k and σ∗k, we conclude that the pair (γ∗k(x), σ∗k(x)) is a SPE for
a zero-sum game with criterion(

gk(x, uk, dk) + VK+1(fk(x, uk, dk))
)

which means that

gk(x, γ
∗
k(x), dk) + VK+1(fk(x, γ

∗
k(x), dk))

≤ gk(x, γ∗k(x), σ∗k(x)) + VK+1(fk(x, γ
∗
k(x), σ∗k(x)))

≤ gk(x, uk, σ∗k(x)) + VK+1(fk(x, uk, σ
∗
k(x)))

∀ uK ∈ UK and dK ∈ DK .
L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

Since the middle term in these inequalities is also equal to the
RHS of Vk(x), we have that

Vk(x) = gk(x, γ∗k(x), σ∗k(x)) + VK+1(fk(x, γ∗k(x), σ∗k(x)))

= sup
d∈D

(
gk(x, γ∗k(x), d) + VK+1(fk(x, γ∗k(x), d))

)
, ∀x ∈ Rn, t ∈ [0, T]

which, from Theorem 15.1 shows that σ∗k(x) is an optimal
(maximizing) state-FB policy against γ∗k(x) and the maximum
is equal to V1(x1). Moreover, since we also have that

Vk(x) = gk(x, γ∗k(x), σ∗k(x)) + VK+1(fk(x, γ∗k(x), σ∗k(x)))

= inf
u∈U

(
gk(x, u, σ∗k(x)) + VK+1(fk(x, u, σ∗k(x)))

)
, ∀x ∈ Rn, t ∈ [0, T]

then γ∗k(x) is an optimal (minimizing) state-FB policy against
σ∗k(x) and the minimum is equal to V1(x1). This proves that
(γ∗, σ∗) is a SPE in state-FB policies with value V1(x1).

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

Moreover, since we have that

Vk(x) = gk(x, γ∗k(x), σ∗k(x)) + VK+1(fk(x, γ∗k(x), σ∗k(x)))

= sup
d∈D

(
gk(x, γ∗k(x), d) + VK+1(fk(x, γ∗k(x), d))

)
, ∀x ∈ Rn, t ∈ [0, T]

which, from Theorem 15.1 shows that σ∗k(x) is an optimal
(maximizing) state-FB policy against γ∗k(x) and the maximum
is equal to V1(x1).

We can actually conclude that P2 cannot get a reward larger
than V1(x1) against γ∗k(x), regardless of the information
structure available to P2.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

Moreover, since we have that

Vk(x) = gk(x, γ∗k(x), σ∗k(x)) + VK+1(fk(x, γ∗k(x), σ∗k(x)))

= inf
u∈U

(
gk(x, u, σ∗k(x)) + VK+1(fk(x, u, σ∗k(x)))

)
, ∀x ∈ Rn, t ∈ [0, T]

which, from Theorem 15.1 shows that γ∗k(x) is an optimal
(minimizing) state-FB policy against σ∗k(x) and the minimum is
equal to V1(x1).

We can actually conclude that P1 cannot get a reward larger
than V1(x1) against σ∗k(x), regardless of the information
structure available to P1.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Discrete-Time Dynamic Programming

Note 16. We can actually conclude that

P2 cannot get a reward larger than V1(x1) against γ∗k(x),
regardless of the information structure available to P2.

P1 cannot get a reward larger than V1(x1) against σ∗k(x),
regardless of the information structure available to P1.

In practice, this means that γ∗k(x) and σ∗k(x) are extremely
safe policies for P1 and P2, respectively, since they guarantee a
level of reward regardless of the information structure for the
other player.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Solving Finite Zero-Sum Games with
MATLAB

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Solving Finite Zero-Sum Games with MATLAB

The backwards iteration in Vk(x) can be implemented very
efficiently in MATLAB R©

Enumerate all states so that the state-space can be viewed as

X := {1, 2, . . . , nX }
Enumerate all actions so that the action spaces can be viewed as

U := {1, 2, . . . , nU} D := {1, 2, . . . , nD}
Assume that all states can occur at every stage and that all
actions are also available at every stage.

Functions fk(x, u, d) (the game dynamics) and gk(x, u, d) (the
stage-cost) can be represented by a three-dimensional
nX × nU × nD tensor. Each Vk(x) can be represented by an
nX × 1 columns vector with one row per state.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Solving Finite Zero-Sum Games with MATLAB

Suppose following variables are available within MATLAB R©

F : cell-array with K elements, each equal to an nX × nU × nD
three-dimensional matrix so that F{k} represents the game
dynamics function fk(x, u, d), ∀x ∈ X , u ∈ U , d ∈ D,
k ∈ {1, 2, . . . ,K}.

entry F{k}(i,j,l) of matrix F{k} is the state fk(i, j, k).

G : cell-array with K elements, each equal to an nX × nU × nD
three-dimensional matrix so that G{k} represents the stage-cost
function gk(x, u, d), ∀x ∈ X , u ∈ U , d ∈ D, k ∈ {1, 2, . . . ,K}.

entry G{k}(i,j,l) of G{k} is the per-state cost gk(i, j, k).

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Solving Finite Zero-Sum Games with MATLAB

Construct Vk(x) using the following MATLAB R© code:

V{K+1} = zeros(size(G{K},1),1);
for k = K:-1:1

Vminmax = min(max(G{k} + V{k+1}(F{k}),[],3),[],2);
Vmaxmin = max(min(G{k} + V{k+1}(F{k}),[],2),[],3);
if any(Vminmax ∼= Vmaxmin)

error(’Saddle - point cannot be found’)

end

V{k} = Vminmax;

end

When procedure fails because Vminmax and Vmaxmin differ,use a
mixed policy using a linear program.

indices of the states for which this is needed can be found
using k = find(Vminmax = Vmaxmin)

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Solving Finite Zero-Sum Games with MATLAB

After running the code, the following variable is created:

V : cell-array with K + 1 elements, each equal to an nX × 1
columns vector so that V{k} represents Vk(x), ∀x ∈ X ,
k ∈ {1, 2, . . . ,K}.

entry V{k}(i) of the vector V{k} is the cost-to-go Vk(i)
from state i at stage k.

For a given state x at stage k, the optimal actions u and d given
by γxk (x) and σxk(x) can be obtained using

[∼,u] = min(max(G(x,:,:) + V{k+1}(F(x,:,:)),[],3),[],2);

[∼,d] = max(min(G(x,:,:) + V{k+1}(F(x,:,:)),[],2),[],3);

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

Characterized by linear dynamics of the form

xk+1 = Axk +Buk + Edk︸ ︷︷ ︸
fk(xk,ukdk)

, x ∈ Rn, u ∈ Rnu , d ∈ Rnd , k ∈ {1, 2, . . . ,K}

and a stage-additive quadratic cost of the form

J :=
K∑

k=1

(
||yk||2 + ||uk||2 − µ2||dk||2

)
=

K∑
k=1

(
x′kC

′Cxk + u′kuk − µ2d′kdk︸ ︷︷ ︸
gk(xk,ukdk)

)
where

yk = Cxk, ∀k ∈ {1, 2, . . . ,K}

µ : a constant conversion factor that maps units of dk into units
of uk and yk.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

This cost function J captures scenarios in which:

1. P1 (minimizer) wants to make the yk small, without
spending much effort in their actions uk, k ∈ {1, 2, . . . ,K}

2. P2 (maximizer) wants to make the same yk large, without
spending much effort in their actions dk, k ∈ {1, 2, . . . ,K}

Note. A conversion factor µ between units of u and y could
be incorporated into the matrix C that defines y.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

The equation Vk(x) for this game is

Vk(x) : = min
uk∈Uk

sup
dk∈Dk

(
x′C ′Cx+ u′kuk − µ2d′kdk + Vk+1(Ax+Buk + Edk)

)
= max

dk∈Dk

inf
uk∈Uk

(
x′C ′Cx+ u′kuk − µ2d′kdk + Vk+1(Ax+Buk + Edk)

)
∀x ∈ Rn, k ∈ {1, 2, . . . ,K}.

Inspired by the quadratic form of the stage cost, we will try to
find a solution to Vk(x) of the form

Vk(x) = x′Pkx, ∀x ∈ Rn, k ∈ {1, 2, . . . ,K + 1}

for appropriately selected symmetric n× n matrices Pk.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

For VK+1(x) = 0, ∀x ∈ X to hold, we need PK+1 = 0.

On the other hand, for Vk(x) to hold we need

x′Pkx = min
uk∈Rnu

sup
dk∈Rnd

Qx(uk, dk) = max
dk∈Rnd

inf
uk∈Rnu

Qx(uk, dk)

∀x ∈ Rn, k ∈ {1, 2, . . . ,K}.

where

Qx(uk, dk) :=

x′C′Cx+ u′kuk − µ2d′kdk + (Ax+Buk + Edk)′Pk+1(Ax+Buk + Edk)

= [u′k d′k x′]

 I +B′Pk+1B B′Pk+1E B′Pk+1A
E′Pk+1B −µ2I + E′Pk+1E E′Pk+1A
A′Pk+1B A′Pk+1E C′C +A′Pk+1A

 uk

dk
x


L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

The RHS of x′Pkx can be viewed as a quadratic zero-sum game
that has a saddle-point equilibrium[

u∗

d∗

]
= −

[
I +B′Pk+1B B′Pk+1E
E′Pk+1B −µ2I + E′Pk+1E

]−1 [
B′Pk+1A
E′Pk+1A

]
x

with value given by

x′
(
C′C +A′Pk+1A

− [A′Pk+1B A′Pk+1E]

[
I +B′Pk+1B B′Pk+1E
E′Pk+1B −µ2I + E′Pk+1E

]−1 [
B′Pk+1A
E′Pk+1A

])
x

provided that

I +B′Pk+1B > 0 − µ2I + E′Pk+1E < 0

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

In this case, the conditions in x′Pkx hold provided that

Pk = C′C +A′Pk+1A

− [A′Pk+1B A′Pk+1E]

[
I +B′Pk+1B B′Pk+1E
E′Pk+1B −µ2I + E′Pk+1E

]−1 [
B′Pk+1A
E′Pk+1A

]
Theorem 17.1 can be used to compute the SPE for this game

and leads to the following result.

Corollary 17.1. Suppose we define the matrices Pk according
to the (backwards) recursion:
PK+1 = 0

Pk = C′C +A′Pk+1A

− [A′Pk+1B A′Pk+1E]

[
I +B′Pk+1B B′Pk+1E
E′Pk+1B −µ2I + E′Pk+1E

]−1 [
B′Pk+1A
E′Pk+1A

]
∀k ∈ {1, 2, . . . ,K}.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

Suppose also that

I +B′Pk+1B > 0, −µ2I + E′Pk+1E < 0, ∀k ∈ {1, 2, . . . ,K}

Then the pair of policies (γ∗, σ∗) defined below is a SPE in
state-FB policies:[
γ∗k(x)
σ∗k(x)

]
= −

[
I +B′Pk+1B B′Pk+1E
E′Pk+1B −µ2I + E′Pk+1E

]−1 [
B′Pk+1A
E′Pk+1A

]
x

∀x ∈ X , k ∈ {1, 2, . . . ,K}.

Moreover, the value of the game is equal to x1P1x1.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

Note (Induced norm).

Since (γ∗, σ∗) is a SPE with value x1P1x1, when P1 uses their
security policy

uk = γ∗k(xk)

for every policy dk = σ∗k(xk) for P2, we have that

J(γ∗, σ∗) = x1P1x1 ≥ J(γ∗, σ) =

K∑
k=1

(
||yk||2 + ||uk||2 − µ2||dk||2

)
and therefore

K∑
k=1

||yk||2 ≤ x1P1x1 + µ2
K∑
k=1

||dk||2 −
K∑
k=1

||uk||2

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

When x1 = 0, this implies that

K∑
k=1

||yk||2 ≤ µ2
K∑
k=1

||dk||2

In view of Note 16, this holds for every possible dk, regardless
of the information structure available to P2, and therefore we
conclude that

sup
dk,k∈{1,2,...,K}

√∑K
k=1 ||yk||2√∑K
k=1 ||dk||2

≤ µ

In view of this, the control law uk = γ∗k(xk) is said to achieve an
L2-induced norm from the disturbance dk, k ∈ {1, 2, . . . ,K} to
the output yk, k ∈ {1, 2, . . . ,K} lower than or equal to µ.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Linear Quadratic Dynamic Games

Notation.

When K =∞, the left-hand side of

sup
dk,k∈{1,2,...,K}

√∑K
k=1 ||yk||2√∑K
k=1 ||dk||2

≤ µ

is called the discrete-time H-infinity norm of the closed-loop and

uk = γ∗k(xk)

guarantees an H-infinity norm smaller than or equal to µ.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

17.1 (Tic-Tac-Toe). Write a MATLAB R© script to compute
the cost-to-go for each state of the Tic- Tac-Toe game.

Assumptions:

P1 (minimizer) places the Xs

P2 (maximizer) places the Os.

Game outcome:

-1 when P1 wins

+1 when P2 wins

0 when the game ends in a draw.

Hint: Draw inspiration from the code in Section 17.3, but
keep in mind that Tic-Tac-Toe is a game of alternate play

algorithm in Section 17.3 is for simultaneous play.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

The choices made for the design of the MATLAB R© code:

Alternate play: To convert an alternate-play game like
Tic-Tac-Toe into a simultaneous-play game

expand each stage of the alternate-play game into 2
sequential stages of a simultaneous-play game.

For the Tic-Tac-Toe game, in stage

1: P1 selects where to place the X. P2 cannot place any O.

2: P2 selects where to place an O. P1 cannot place any X.

This continues, with

P1 placing Xs in stages 1, 3, 5, 7, and 9

P2 placing Os in stages 2, 4, 6, and 8

In this expanded 9-stage game, at each stage both players play
simultaneously. But, one of the players has no choice to make.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

State encoding: encode states of the game by assigning to
each state an 18-bit integer. Each pair of bits in this integer is
associated with one of the 9 slots in the Tic-Tac-Toe board as

where the 9 slots are numbered as follows:

1 2 3

4 5 6

7 8 9

The two bits associated with a slot indicate its content:

most significant bit least significant bit meaning

0 0 empty slot

0 1 X

1 0 O

1 1 invalid

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

MATLAB R© function ttt addX(Sk)

Takes an N × 1 vector Sk of integers representing states.
Generates an N × 9 matrix newS that, for each of the N states
in Sk, computes all the states that would be obtained by adding
an X to each of the 9 possible slots.

Function ttt addX(Sk) generates two additional outputs:

invalid : N × 9 boolean-valued matrix.
An entry equal to true indicates that the corresponding entry
in newS does not correspond to a valid placement of an X
because the corresponding slot was not empty

won : N × 9 boolean-valued matrix.
An entry equal to true indicates that the corresponding entry
in newS has three Xs in a row.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

MATLAB R© function ttt addX(Sk)

function [newS,won,invalid] = ttt addX(Sk)

XplayMasks = int32([bin2dec(’010000 000000 000000’);

bin2dec(’000100 000000 000000’);

bin2dec(’000001 000000 000000’);

bin2dec(’000000 010000 000000’);

bin2dec(’000000 000100 000000’);

bin2dec(’000000 000001 000000’);

bin2dec(’000000 000000 010000’);

bin2dec(’000000 000000 000100’);

bin2dec(’000000 000000 000001’)]);

% compute new state and test whether move is valid

newS = zeros(size(Sk,1),length(XplayMasks),’int32’);

invalid = false(size(newS));

for slot = 1:length(XplayMasks)

mask = XplayMasks(slot);

newS(:,slot) = bitor(S,mask);

invalid(bitand(Sk,mask + 2*mask)∼=0,slot) = true;

end

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

XwinMasks = int32([bin2dec(’010101 000000 000000’); % top horizontal

bin2dec(’000000 010101 000000’); % mid horizontal

bin2dec(’000000 000000 010101’); % bottom horizontal

bin2dec(’010000 010000 010000’); % left vertical

bin2dec(’000100 000100 000100’); % center vertical

bin2dec(’000001 000001 000001’); % right vertical

bin2dec(’010000 000100 000001’); % descend diagonal

bin2dec(’000001 000100 010000’)]); % ascend diagonal

% check if X won

won = false(size(newS));

for i = 1:length(XwinMasks)

won = bitor(won,bitand(newS,XwinMasks(i))== XwinMasks(i));

end

end

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

Function ttt addO(Sk) : similar role, but now for adding Os.

function [newS,won,invalid] = ttt addO(Sk,slot)

OplayMasks = int32([bin2dec(’100000 000000 000000’);

bin2dec(’001000 000000 000000’);

bin2dec(’000010 000000 000000’);

bin2dec(’000000 100000 000000’);

bin2dec(’000000 001000 000000’);

bin2dec(’000000 000010 000000’);

bin2dec(’000000 000000 100000’);

bin2dec(’000000 000000 001000’);

bin2dec(’000000 000000 000010’)]);

% compute new state and test whether move is valid

newS = zeros(size(Sk,1),length(OplayMasks),’int32’);

invalid = false(size(newS));

for slot = 1:length(OplayMasks)

mask = OplayMasks(slot);

newS(:,slot) = bitor(Sk,mask);

invalid(bitand(Sk,mask + mask/2)∼=0,slot) = true;

end

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

OwinMasks = int32([bin2dec(’101010 000000 000000’); % top horizontal

bin2dec(’000000 101010 000000’); % mid horizontal

bin2dec(’000000 000000 101010’); % bottom horizontal

bin2dec(’100000 100000 100000’); % left vertical

bin2dec(’001000 001000 001000’); % center vertical

bin2dec(’000010 000010 000010’); % right vertical

bin2dec(’100000 001000 000010’); % descend diagonal

bin2dec(’000010 001000 100000’)]); % ascend diagonal

% check if O won

won = false(size(newS));

for i =1:length(OwinMasks)

won = bitor(won,bitand(newS,OwinMasks(i)) == OwinMasks(i));

end

end

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise
State enumeration: To compute cost-to-go, enumerate all states

that can occur at each stage of the Tic-Tac-Toe game.
function S = ttt states(S0)

K = 9;

S = cell(K+1,1);

S{1} = S0;

for k = 1:K

if rem(k,2) == 1 % player X (minimizer) plays at odd stages

[newS,won,invalid] = ttt addX(S{k}); % compute all next states

else % player O (minimizer) plays at even stages

[newS,won,invalid] = ttt addO(S{k}); % compute all nextstates

end

% stack all states in a column vector

newS = reshape(newS,[],1);

won = reshape(won,[],1);

invalid = reshape(invalid,[],1);

% store (unique) list of states for which the game continues

S{k+1} = unique(newS(∼invalid & ∼won));

end

end

Returns cell-array S with 10 elements. Each entry S{k} is a vector

containing all valid stage-k states for which game has not yet finished.

Removes game-over states from S{k}: no cost-to-go for these.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

Final code: The following code computes the cost-to-go for each

state in the cell-array S computed by the function ttt states().

K = 9;

V = cell(K+1,1);

V{K+1} = zeros(size(S{K+1}),’int8’);
for k = K:-1:1

if rem(k,2) == 1

% player X (minimizer) plays at odd stages

[newS,won,invalid] = ttt addX(S{k}); % compute all next states

% convert states to indices in S{k+1}
% to get their costs-to-go from V{k+1} states

[exists,newSndx] = ismember(newS,S{k +1});
% compute all possible values

newV = zeros(size(newS),’int8’);

newV(exists) = V{k+1}(newSndx(exists));
newV(won) = -1;

newV(invalid) =+ Inf; % penalize invalid actions for minimizer

V{k} = min(newV,[],2); % pick best for minimizer

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

else

% player O (maximizer) plays at even stages

[newS,won,invalid] = ttt addO(S{k}); % compute all next states

% convert states to indices in S{k+1}
% to get their costs-to-go from V{k+1}
[exists,newS] = ismember(newS,S{k+1});
% compute all possible values

newV = zeros(size(newS),’int8’);

newV(exists) = V{k+1}(newS(exists));
newV(won) = 1;

newV(invalid) = -Inf; % penalize invalid actions for maximizer

V{k} = max(newV,[],2); % pick best for maximizer

end

end

This code returns a cell-array V with 10 elements.

Each entry V{k} of V is an array with the same size as S{k}
whose entries are equal to the cost-to-go from the corresponding
state in S{k} at stage k.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

Code has same structure as the code in Section 17.3, but it is
optimized to take advantage of the structure of this game:

1.- Since P1 places an X at the odd stages and P2 places an O the
even stages, we find an if statement inside the for loop that allows
the construction of the cost-to-go V{k} to differ depending on whether
k is even or odd.

2.- For the code in Section 17.3, the matrix F{k} contains all
possible states that can be reached at stage k+1 for all possible
actions for each player.

Functions ttt addX(S{k}) and ttt addO(S{k}) provide this set of
states at the even and odd stages, respectively.

The variable newS corresponds to F{k} in the code in Section 17.3,
but newS contains invalid states that need to be ignored.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

3.- The code in Section 17.3 uses G{k}+V{k+1}(F{k}) to add the
per-stage cost G{k} at stage k with the cost-to-go V{k+1}(F{k}) from
stage k+1.

In the Tic-Tac-Toe game, the per-stage cost is always zero unless the
games finishes, so there is no need to add the per-stage cost until one
of the players wins.

When a player wins, we do not need to consider the cost-to-go from
subsequent stages because the game will end.

The variable newV corresponds to G{k}+V{k+1}(F{k}) in the code in
Section 17.3.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

Practice Exercise

4.- When k is odd only P1 (minimizer) can make a choice: there is no
maximization to carry out over actions of P2. Vminmax and Vmaxmin

are obtained with a simple minimization and are always equal to each
other.

When k is even only P2 (maximizer) can make a choice: there is no
minimization to carry out over actions of P1. Vminmax and Vmaxmin

are obtained with a simple maximization and are always equal to each
other.

This means that we do not need to compute Vminmax and Vmaxmin

and test if they are equal, before assigning their value to V{k}.

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

Zero-Sum Dynamic Games in Discrete Time Discrete-Time Dynamic Programming Solving Finite Zero-Sum Games with MATLAB Linear Quadratic Dynamic Games Practice Exercise

End of Lecture

17 - State-Feedback Zero-Sum Dynamic Games

Questions?

L.R. Garcia Carrillo TAMU-CC

COSC-6590/GSCS-6390 Games: Theory and Applications Lecture 17 - State-Feedback Zero-Sum Dynamic Games

	Zero-Sum Dynamic Games in Discrete Time
	Discrete-Time Dynamic Programming
	Solving Finite Zero-Sum Games with MATLAB
	Linear Quadratic Dynamic Games
	Practice Exercise

